Suppr超能文献

全基因组鉴定乳腺癌基因-基因相互作用网络的关键调节因子。

Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer.

机构信息

Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.

出版信息

BMC Genomics. 2017 Oct 3;18(Suppl 6):679. doi: 10.1186/s12864-017-4028-4.

Abstract

BACKGROUND

With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking.

RESULTS

We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions.

CONCLUSIONS

Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

摘要

背景

随着高通量基因谱分析技术的进步,已经构建了大量的基因相互作用图谱。基因-基因相互作用的更高层次是由相互作用强度受(即依赖于)关键调节剂基因表达水平调节的基因对组成的。对雌激素受体(ER)这一最著名的调节剂的系统研究揭示了其在乳腺癌中的功能和预后意义。然而,缺乏对可能进一步揭示调节基因相互作用的关键调节剂基因的全基因组识别。

结果

我们提出了一种基于全基因组基因表达谱筛选关键调节剂的系统工作流程。我们设计了四个模块性参数来衡量一个潜在调节剂改变基因相互作用网络的能力。将该方法应用于 286 个乳腺癌数据集,我们全面表征了模块性参数,并鉴定了总共 973 个关键调节剂基因。这些调节剂的模块性在三个独立的乳腺癌数据集中得到了验证。ER 的编码基因 ESR1 出现在列表中,并且揭示了大量新的调节剂。例如,乳腺癌的预后预测因子 SFRP1 被发现是第二个调节剂。对 973 个调节剂的功能注释分析揭示了它们与 ER 相关的细胞过程以及免疫和肿瘤相关功能的参与。

结论

到目前为止,我们提出了全基因组范围内关键调节剂基因的首次全面分析。证实了过滤参数的有效性以及调节剂在队列之间的保守性。我们的数据为基因-基因相互作用的调节层提供了新的见解,并为进一步的生物学研究提供了候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ec/5629553/880ea39bd248/12864_2017_4028_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验