Abba Martín C, Hu Yuhui, Sun Hongxia, Drake Jeffrey A, Gaddis Sally, Baggerly Keith, Sahin Aysegul, Aldaz C Marcelo
Department of Carcinogenesis, The University of Texas M,D, Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA.
BMC Genomics. 2005 Mar 11;6:37. doi: 10.1186/1471-2164-6-37.
Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE) profiles of 26 human breast carcinomas based on their estrogen receptor alpha (ER) status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts.
We identified 520 transcripts differentially expressed between ERalpha-positive (+) and ERalpha-negative (-) primary breast tumors (Fold change >or= 2; p < 0.05). Furthermore, we identified 220 high-affinity Estrogen Responsive Elements (EREs) distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERalpha (+) breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO) biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011), calcium ion binding related transcripts (p = 0.033) and steroid hormone receptor activity related transcripts (p = 0.031). SAGE data associated with ERalpha status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERalpha associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERalpha (+) invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR.
The integration of the breast cancer comparative transcriptome analysis based on ERalpha status coupled to the genome-wide identification of high-affinity EREs and GO over-representation analysis, provide useful information for validation and discovery of signaling networks related to estrogen response in this malignancy.
已知雌激素可调节乳腺癌细胞的增殖并改变其表型特性。鉴定人类乳腺肿瘤中雌激素调节的基因是理解雌激素在癌症中作用的分子机制的重要一步。为此,我们根据雌激素受体α(ER)状态生成并比较了26个人类乳腺癌的基因表达序列分析(SAGE)图谱。由此,构建了一个包含近250万个标签的乳腺癌SAGE数据库,代表了超过50,000个转录本。
我们鉴定出520个在ERα阳性(+)和ERα阴性(-)原发性乳腺肿瘤之间差异表达的转录本(倍数变化≥2;p<0.05)。此外,我们在ERα(+)乳腺肿瘤中473个上调基因的163个启动子区域鉴定出220个高亲和力雌激素反应元件(ERE)。简而言之,基于基因本体(GO)生物学功能注释,我们观察到细胞生长相关基因、DNA结合和转录因子活性相关基因主要上调。GO术语过度表达分析显示各种转录本家族有统计学意义的富集,包括:金属离子结合相关转录本(p = 0.011)、钙离子结合相关转录本(p = 0.033)和类固醇激素受体活性相关转录本(p = 0.031)。将与ERα状态相关的SAGE数据与乳腺癌DNA微阵列研究报告的信息进行比较。通过这种跨平台比较,很大一部分与ERα相关的基因表达变化得到了验证。然而,我们的SAGE研究还鉴定出一组新的基因,它们在ERα(+)浸润性乳腺肿瘤中高表达,此前未被报道。这些观察结果通过实时RT-PCR在另一组独立的人类乳腺肿瘤中进一步得到验证。
基于ERα状态的乳腺癌比较转录组分析与全基因组高亲和力ERE鉴定及GO过度表达分析相结合,为验证和发现与该恶性肿瘤中雌激素反应相关的信号网络提供了有用信息。