Suppr超能文献

视觉统计学习的可分离行为结果

Dissociable behavioural outcomes of visual statistical learning.

作者信息

Bays Brett C, Turk-Browne Nicholas B, Seitz Aaron R

机构信息

Department of Psychology, University of California, Riverside, CA, USA.

Department of Psychology, Princeton University, Princeton, NJ, USA.

出版信息

Vis cogn. 2016;23(9-10):1072-1097. doi: 10.1080/13506285.2016.1139647. Epub 2016 Feb 22.

Abstract

Statistical learning refers to the extraction of probabilistic relationships between stimuli and is increasingly used as a method to understand learning processes. However, numerous cognitive processes are sensitive to the statistical relationships between stimuli and any one measure of learning may conflate these processes; to date little research has focused on differentiating these processes. To understand how multiple processes underlie statistical learning, here we compared, within the same study, operational measures of learning from different tasks that may be differentially sensitive to these processes. In Experiment 1, participants were visually exposed to temporal regularities embedded in a stream of shapes. Their task was to periodically detect whether a shape, whose contrast was staircased to a threshold level, was present or absent. Afterwards, they completed a search task, where statistically predictable shapes were found more quickly. We used the search task to label shape pairs as "learned" or "non-learned", and then used these labels to analyse the detection task. We found a dissociation between learning on the search task and the detection task where only non-learned pairs showed learning effects in the detection task. This finding was replicated in further experiments with recognition memory (Experiment 2) and associative learning tasks (Experiment 3). Taken together, these findings are consistent with the view that statistical learning may comprise a family of processes that can produce dissociable effects on different aspects of behaviour.

摘要

统计学习是指提取刺激之间的概率关系,并且越来越多地被用作理解学习过程的一种方法。然而,许多认知过程对刺激之间的统计关系敏感,而且任何一种学习测量方法都可能使这些过程相互混淆;迄今为止,很少有研究专注于区分这些过程。为了理解多个过程如何构成统计学习的基础,我们在同一研究中比较了来自不同任务的学习操作指标,这些任务可能对这些过程有不同的敏感性。在实验1中,参与者视觉上接触嵌入在一系列形状中的时间规律。他们的任务是定期检测一个对比度逐步调整到阈值水平的形状是否存在。之后,他们完成了一个搜索任务,在这个任务中,统计上可预测的形状被更快地找到。我们使用搜索任务将形状对标记为“已学习”或“未学习”,然后使用这些标签来分析检测任务。我们发现在搜索任务和检测任务的学习之间存在分离,其中只有未学习的形状对在检测任务中显示出学习效果。这一发现在用识别记忆(实验2)和联想学习任务(实验3)进行的进一步实验中得到了重复。综上所述,这些发现与以下观点一致,即统计学习可能包含一系列能够对行为的不同方面产生可分离效应的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56c3/4963038/5761eac2ba40/nihms793267f1.jpg

相似文献

1
Dissociable behavioural outcomes of visual statistical learning.视觉统计学习的可分离行为结果
Vis cogn. 2016;23(9-10):1072-1097. doi: 10.1080/13506285.2016.1139647. Epub 2016 Feb 22.
5
Verbal and novel multisensory associative learning in adults.成人的言语及新型多感官联想学习
F1000Res. 2013 Feb 7;2:34. doi: 10.12688/f1000research.2-34.v2. eCollection 2013.
6
No Apparent Influence of Reward upon Visual Statistical Learning.奖励对视觉统计学习无明显影响。
Front Psychol. 2016 Nov 2;7:1687. doi: 10.3389/fpsyg.2016.01687. eCollection 2016.
8
Visual statistical learning is modulated by arbitrary and natural categories.视觉统计学习受任意和自然类别调节。
Psychon Bull Rev. 2021 Aug;28(4):1281-1288. doi: 10.3758/s13423-021-01917-w. Epub 2021 Mar 31.

本文引用的文献

1
The necessity of the medial temporal lobe for statistical learning.内侧颞叶对统计学习的必要性。
J Cogn Neurosci. 2014 Aug;26(8):1736-47. doi: 10.1162/jocn_a_00578. Epub 2014 Jan 23.
2
Using confidence intervals in within-subject designs.在个体内设计中使用置信区间。
Psychon Bull Rev. 1994 Dec;1(4):476-90. doi: 10.3758/BF03210951.
5
Attention is spontaneously biased toward regularities.注意会自动偏向规律。
Psychol Sci. 2013 May;24(5):667-77. doi: 10.1177/0956797612460407. Epub 2013 Apr 4.
7
Brain networks of explicit and implicit learning.内隐学习和外显学习的大脑网络。
PLoS One. 2012;7(8):e42993. doi: 10.1371/journal.pone.0042993. Epub 2012 Aug 31.
10
How implicit is visual statistical learning?视觉统计学习有多隐式?
J Exp Psychol Learn Mem Cogn. 2012 Sep;38(5):1425-31. doi: 10.1037/a0027210. Epub 2012 Feb 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验