Suppr超能文献

阳离子共吸附是导致阶梯状铂单晶电极上氢吸附的表观 pH 依赖性的原因。

Co-adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Single-Crystal Electrode.

机构信息

Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands.

Department of Chemical Engineering, The Pennsylvania State University, 51 Greenberg Complex, University Park, PA, 16802, USA.

出版信息

Angew Chem Int Ed Engl. 2017 Nov 20;56(47):15025-15029. doi: 10.1002/anie.201709455. Epub 2017 Oct 23.

Abstract

The successful deployment of advanced energy-conversion systems depends critically on our understanding of the fundamental interactions of the key adsorbed intermediates (hydrogen *H and hydroxyl *OH) at electrified metal-aqueous electrolyte interfaces. The effect of alkali metal cations (Li , Na , K , Cs ) on the non-Nernstian pH shift of the step-related voltammetric peak of the Pt(553) electrode is investigated over a wide pH window (1 to 13) by means of experimental and computational methods. The co-adsorbed alkali cations along the step weaken the OH adsorption at the step sites, causing a positive shift of the potential of the step-related peak on Pt(553). Density functional calculations explain the observations on the identity and concentration of alkali cations on the non-Nernstian pH shift, and demonstrate that cation-hydroxyl co-adsorption causes the apparent pH dependence of "hydrogen" adsorption in the step sites of platinum electrodes.

摘要

先进能量转换系统的成功部署关键取决于我们对带电金属-水基电解质界面上关键吸附中间体(氢H 和羟基OH)基本相互作用的理解。通过实验和计算方法研究了碱金属阳离子(Li、Na、K、Cs)在很宽的 pH 窗口(1 至 13)内对 Pt(553)电极与台阶相关的伏安峰的非-Nernstian pH 偏移的影响。沿台阶共吸附的碱阳离子削弱了台阶处的 OH 吸附,导致 Pt(553)上与台阶相关的峰的电位发生正移。密度泛函计算解释了观察到的非-Nernstian pH 偏移中碱阳离子的种类和浓度,并表明阳离子-羟基共吸附导致了铂电极台阶处“氢”吸附的表观 pH 依赖性。

相似文献

5
Understanding the pH Dependence of Underpotential Deposited Hydrogen on Platinum.理解欠电位沉积氢在铂上的pH依赖性。
Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17718-17723. doi: 10.1002/anie.201909697. Epub 2019 Nov 6.
6
Hydrogen adsorption on nano-structured platinum electrodes.氢在纳米结构铂电极上的吸附
Faraday Discuss. 2018 Oct 1;210(0):301-315. doi: 10.1039/c8fd00062j.
10
Influence of Alkali Metal Cations on the Oxygen Reduction Activity of PtY and PtGd Alloys.碱金属阳离子对PtY和PtGd合金氧还原活性的影响。
J Phys Chem C Nanomater Interfaces. 2024 Mar 18;128(12):4969-4977. doi: 10.1021/acs.jpcc.4c00531. eCollection 2024 Mar 28.

引用本文的文献

1
2
Electrolyte Cation Effects on Interfacial Acidity and Electric Fields.电解质阳离子对界面酸度和电场的影响。
J Phys Chem C Nanomater Interfaces. 2022 May 19;126(19):8477-8488. doi: 10.1021/acs.jpcc.2c01134. Epub 2022 May 4.
6
Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces.电催化:从平面表面到纳米结构界面
Chem Rev. 2025 Feb 12;125(3):1332-1419. doi: 10.1021/acs.chemrev.4c00133. Epub 2025 Jan 28.
8
Recent advances in microenvironment regulation for electrocatalysis.电催化微环境调控的最新进展
Natl Sci Rev. 2024 Sep 19;11(12):nwae315. doi: 10.1093/nsr/nwae315. eCollection 2024 Dec.

本文引用的文献

8
Surface characterization of platinum electrodes.铂电极的表面表征
Phys Chem Chem Phys. 2008 Mar 14;10(10):1359-73. doi: 10.1039/b709809j. Epub 2007 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验