Suppr超能文献

电催化:从平面表面到纳米结构界面

Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces.

作者信息

Fairhurst Alasdair R, Snyder Joshua, Wang Chao, Strmcnik Dusan, Stamenkovic Vojislav R

机构信息

Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.

HORIBA Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States.

出版信息

Chem Rev. 2025 Feb 12;125(3):1332-1419. doi: 10.1021/acs.chemrev.4c00133. Epub 2025 Jan 28.

Abstract

The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.

摘要

对能量转换至关重要的反应集中在氢、氧、碳的化学性质以及构成电化学能量转换系统的多相催化剂表面上。表面吸附质相互作用共同构成了电化学界面,并决定了许多清洁能源技术的反应动力学。实际装置引入了高度的复杂性,表面粗糙度、结构、组成和形态与电解质、pH值、扩散以及系统层面的限制因素相互结合,对我们解析潜在现象的能力构成了挑战。为了在材料设计上取得重大进展,有必要采用一种基于明确表面的结构化方法来选择性地控制不同参数,同时通过谨慎应用纳米结构表面逐步增加复杂性。在本综述中,我们涵盖了通过这种方法在该领域关键要素方面取得的进展,从最简单的氢氧化和析氢反应开始,到更复杂的有机分子结束。在每种情况下,我们都对明确系统对我们理解电化学能量转换技术的贡献以及更广泛的应用如何有助于智能材料设计提供了独特的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74f8/11826915/0d51490ef54c/cr4c00133_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验