Stephan Carl N
Laboratory for Human Craniofacial and Skeletal Identification (HuCS-ID Lab), School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
Forensic Sci Int. 2017 Nov;280:113-123. doi: 10.1016/j.forsciint.2017.09.016. Epub 2017 Sep 29.
The tallied facial soft tissue thicknesses (or T-Tables) represent grand means of published facial soft tissue thickness sample means. These sample means have been drawn from across the full-breadth of the facial soft tissue thickness (FSTT) literature, including forensic science, anthropology and odontology. The report of new summary statistics for >1290 new sub-adults and >2200 new adults since the last T-Table calculation, in 2008 for sub-adults and 2013 for adults respectively, makes their update timely. The maximum sample sizes at any landmark now stand at 3023 for individuals aged 0-11 years old (g-g'); 3145 for individuals aged 12-17 years old (n-se'); and 10,333 for adults (n-se'). Following the recalculation of grand weighted means and comparison to the original 2008 data, some shifts in the T-Table statistics are evident at specific landmarks, namely: 2-2.5mm increases at gonion (go-go') and mid-mandibular border (mmb-mmb') for adults; 3.5mm decrease at gonion (go-go') for 12-17year olds; and 2.0mm decrease at menton (me-me') for 0-11year olds. Differences at all other landmarks (91-100% depending on the dataset) were minimal being <1.0mm. Performance tests of the new grand means as point estimators (using individuals with known FSTT size from the C-Table), show the 2018 T-Table statistics to produce marginally less error than the 2013 means: 2018 standard error of the estimate=3.7mm in contrast to 2013 standard error of the estimate=3.9mm. The long run nature of the T-Table statistics (i.e., big data) and quantified performance test accuracies on known subjects, earmark the 2018 T-Table as the premier FSTT standard for craniofacial identification casework. In the distant future, this is likely to change as the C-Table raw data repository grows, allowing shorths and shormaxes to be calculated for large samples. Given current raw data repository sample sizes of 0-1574 for T-Table landmarks (notably lower for younger individuals), there is some way to go before enhanced central tendency estimators can entirely replace untrimmed arithmetic means.
汇总的面部软组织厚度(或T表)代表了已发表的面部软组织厚度样本均值的总体均值。这些样本均值取自面部软组织厚度(FSTT)文献的全范围,包括法医学、人类学和牙科学。自上次T表计算以来,分别于2008年和2013年报告了超过1290名新的青少年和超过2200名新的成年人的新汇总统计数据,使得及时更新T表成为可能。现在,任何地标处的最大样本量分别为:0至11岁个体(g - g')为3023;12至17岁个体(n - se')为3145;成年人(n - se')为10333。在重新计算总体加权均值并与2008年原始数据进行比较后,T表统计数据在特定地标处出现了一些变化,具体如下:成年人的下颌角(go - go')和下颌中边界(mmb - mmb')增加2 - 2.5毫米;12至17岁个体的下颌角(go - go')减少3.5毫米;0至11岁个体的颏下点(me - me')减少2.0毫米。所有其他地标处的差异(取决于数据集,为91 - 100%)极小,小于1.0毫米。将新的总体均值作为点估计器进行性能测试(使用C表中已知FSTT大小的个体),结果显示2018年T表统计数据产生的误差略小于2013年的均值:2018年估计的标准误差为3.7毫米,而2013年估计的标准误差为3.9毫米。T表统计数据的长期性质(即大数据)以及对已知受试者的量化性能测试准确性,使2018年T表成为颅面识别案件工作的首要FSTT标准。在遥远的未来,随着C表原始数据存储库的增长,可能会有所改变,从而能够为大样本计算简写和短最大值。鉴于目前T表地标处的原始数据存储库样本量为0至1574(较年轻个体的数据明显更低),在增强的集中趋势估计器能够完全取代未修剪的算术均值之前,还有很长的路要走。