Suppr超能文献

利用搜索引擎查询数据和气候变量预测手足口病发病率:中国广东的一项生态学研究

Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China.

作者信息

Du Zhicheng, Xu Lin, Zhang Wangjian, Zhang Dingmei, Yu Shicheng, Hao Yuantao

机构信息

Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China.

出版信息

BMJ Open. 2017 Oct 6;7(10):e016263. doi: 10.1136/bmjopen-2017-016263.

Abstract

OBJECTIVES

Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD.

DESIGN

Ecological study.

SETTING AND PARTICIPANTS

Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011-2014. Analyses were conducted at aggregate level and no confidential information was involved.

OUTCOME MEASURES

A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI.

RESULTS

A high correlation between HFMD incidence and BDI (=0.794, p<0.001) or temperature (=0.657, p<0.001) was observed using both time series plot and correlation matrix. A linear effect of BDI (without lag) and non-linear effect of temperature (1 week lag) on HFMD incidence were found in a distributed lag non-linear model. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of -345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%.

CONCLUSIONS

An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings.

摘要

目的

手足口病(HFMD)在中国造成了沉重负担,尤其是在广东省。基于强化监测系统,我们旨在探讨加入温度和搜索引擎查询数据是否能改善手足口病的风险预测。

设计

生态学研究。

设置与参与者

收集手足口病确诊病例、气候参数和搜索引擎查询日志的信息。2011 - 2014年期间,从监测系统中识别出共136万例手足口病病例。分析在总体水平上进行,不涉及机密信息。

观察指标

采用带有外部变量的季节性自回归积分滑动平均(ARIMA)模型(ARIMAX)来预测2011年至2014年的手足口病发病率,同时考虑温度和搜索引擎查询数据(百度指数,BDI)。使用拟合优度统计和预测精度来比较模型:(1)仅基于监测数据的模型,以及加入(2)温度、(3)BDI和(4)温度与BDI两者的模型。

结果

使用时间序列图和相关矩阵观察到手足口病发病率与BDI(=0.794,p<0.001)或温度(=0.657,p<0.001)之间存在高度相关性。在分布滞后非线性模型中发现BDI(无滞后)对手足口病发病率的线性效应和温度(1周滞后)的非线性效应。与仅基于监测数据的模型相比,包含BDI的ARIMAX模型达到了最佳拟合优度,Akaike信息准则(AIC)值为 - 345.332,而包含BDI和温度两者的模型在平均绝对百分比误差(MAPE)为101.745%方面具有最准确的预测。

结论

纳入搜索引擎查询数据的ARIMAX模型显著改善了手足口病的预测。有必要进一步研究以检验纳入搜索引擎查询数据是否也能改善其他环境中其他传染病的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae50/5640051/697db9d86acb/bmjopen-2017-016263f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验