Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
Biochim Biophys Acta Gen Subj. 2018 Feb;1862(2):212-228. doi: 10.1016/j.bbagen.2017.10.001. Epub 2017 Oct 6.
Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies.
We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified.
The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function.
These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
生命系统的特征是生物分子的动态组装和拆卸。这些生物分子的动力学有序机制已经在实验和理论上进行了研究。主要的理论方法包括量子力学(QM)计算、全原子(AA)建模和粗粒化(CG)建模。所选方法取决于目标系统的大小(电子、原子、分子和分子组装之间存在差异)。这些层次化的方法可以与分子动力学(MD)模拟和/或液体的积分方程理论相结合,这些理论涵盖了所有的大小层次。
我们回顾了量子力学/分子力学(QM/MM)计算、AA MD 模拟、CG 建模和积分方程理论的框架。还举例说明了这些方法在生物分子系统动力学有序中的应用。
QM/MM 计算能够研究化学反应。省略 QM 计算的 AA MD 模拟可以跟踪更长时间尺度的现象。通过减少自由度和计算成本,CG 建模可以跟踪比 AA 建模长得多的时间尺度的现象。液体的积分方程理论阐明了液体结构,例如液体是否遵循径向分布函数。
这些理论方法可以分析生物分子系统的动态行为。它们还为探索生物分子的动态有序系统提供了有用的工具,例如自组装。本文是由 Kato Koichi 博士编辑的“生物物理探索生物分子系统动力学有序”特刊的一部分。