Department of Bioorganization Research, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Biochim Biophys Acta Gen Subj. 2018 Feb;1862(2):358-364. doi: 10.1016/j.bbagen.2017.11.002. Epub 2017 Nov 10.
To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems.
This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules.
Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
通过合成化学方法来模拟生命系统的本质已经被尝试过。随着超分子化学的进步,已经有可能合成出大小和复杂度接近生物大分子的分子。最近,通过精确设计的超分子与生物分子的结合,为设计和创造独特的分子系统提供了结构平台。在合成化学和生物分子科学之间架起桥梁,也为人工细胞系统的创造发展出了方法学。
本文概述了最近不断扩展的跨学科研究,即将人工分子与生物分子融合,这可以加深我们对生物分子动态有序性的理解。
使用基于精确化学设计的自下而上的方法,通过人工分子与生物材料的合成和杂交,已经实现了具有生命系统基本功能的复杂平台的构建。有效的杂化,分子半机械人,方法不仅能够建立模拟自然的动态系统,从而为生物物理理解建立明确的模型,还能够创造出具有高度先进、集成功能的系统。本文是由加藤耕一博士编辑的题为“生物分子系统动态有序性的生物物理探索”的特刊的一部分。