Gasbarra Dario, Pajevic Sinisa, Basser Peter J
Department of Mathematics and Statistics, University of Helsinki, Helsinki FI-00014, Finland.
Mathematical and Statistical Computing Lab, National Institutes of Health (NIH), Bethesda, MD 20892.
SIAM J Imaging Sci. 2017;10(3):1511-1548. doi: 10.1137/16M1098693. Epub 2017 Sep 14.
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of symmetric random matrices, , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, . When has repeated eigenvalues, the eigenvalues of are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same eigenspaces. We apply these results to diffusion tensor imaging (DTI), with = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
在材料科学和医学成像应用中,越来越多地可以获得不同物理性质的张量值和矩阵值测量。此类多变量数据的特征值和特征向量提供了新颖且独特的信息,但代价是需要更复杂的统计分析。在这项工作中,我们推导了在对称随机矩阵这一特殊但重要的情况下,即观察到具有各向同性矩阵变量高斯噪声时,特征值和特征向量的分布。这些分布的性质强烈依赖于均值张量/矩阵的对称性。当具有重复特征值时,的特征值并非渐近高斯分布,并且在对应于相同特征空间的特征值之间会观察到排斥现象。我们将这些结果应用于扩散张量成像(DTI),其中 = 3,解决了检测扩散张量对称性的一个重要问题,并寻求一种可能产生各向同性高斯分布的实验设计。在三维情况下,当均值张量是球对称的且噪声是高斯且各向同性时,前三个特征值中心矩统计量的渐近分布很简单,可用于检验各向同性。为了应用此类检验,我们在单位球面上使用权重恒定的阶数≥4的求积规则来设计一个DTI实验,其性质是潜在真实张量的各向同性意味着费希尔信息的各向同性。我们还使用具有莱斯噪声模型的模拟DTI数据解释了这些方法的潜在影响。