Liu Chang, Jakubikova Elena
Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , USA . Email:
Chem Sci. 2017 Sep 1;8(9):5979-5991. doi: 10.1039/c7sc01169e. Epub 2017 Jun 27.
Interfacial electron transfer (IET) is one of the crucial steps in the light-harvesting process that occurs in various assemblies for solar energy conversion, such as dye-sensitized solar cells or dye-sensitized photoelectrosynthesis cells. Computational studies of IET in dye-semiconductor assemblies employ a variety of approaches, ranging from phenomenological models such as Fermi's golden rule to more complex methods relying on explicit solutions of the time-dependent Schrödinger equation. This work investigates IET in a model pyridine-TiO assembly, with the goals of assessing the validity of Fermi's golden rule for calculation of the IET rates, understanding the importance of conformational sampling in modeling the IET process, and establishing an approach to rapid computational screening of dye-sensitizers that undergo fast IET into the semiconductor. Our results suggest that IET is a two-step process, in which the electron is first transferred into the semiconductor surface states, followed by diffusion of the electron into the nanoparticle bulk states. Furthermore, while Fermi's golden rule and related approaches are appropriate for predicting the initial IET rate (, the initial transfer of an electron from the dye into the semiconductor surface states), they are not reliable for prediction of the overall IET rate. The inclusion of conformational sampling at room temperature into the model offers a more complete picture of the IET process, leading to a distribution of IET rates with a median rate faster than the IET rate obtained for the fully-optimized structure at 0 K. Finally, the two most important criteria for determination of the initial IET rate are the percentage of electron density on the linker in the excited state as well as the number of semiconductor acceptor states available at the energy of the excited state. Both of these can be obtained from relatively simple electronic structure calculations at either or semiempirical levels of theory and can thus be used for rapid screening of dyes with the desired properties.
界面电子转移(IET)是发生在各种太阳能转换组件(如染料敏化太阳能电池或染料敏化光电解合成电池)的光捕获过程中的关键步骤之一。染料 - 半导体组件中IET的计算研究采用了多种方法,从诸如费米黄金规则的唯象模型到依赖于含时薛定谔方程显式解的更复杂方法。这项工作研究了模型吡啶 - TiO组件中的IET,目的是评估费米黄金规则用于计算IET速率的有效性,理解构象采样在模拟IET过程中的重要性,并建立一种对能快速将IET进入半导体的染料敏化剂进行快速计算筛选的方法。我们的结果表明,IET是一个两步过程,其中电子首先转移到半导体表面态,随后电子扩散到纳米颗粒体相态。此外,虽然费米黄金规则及相关方法适用于预测初始IET速率(即电子从染料到半导体表面态的初始转移),但它们对于预测整体IET速率并不可靠。在模型中纳入室温下的构象采样能更全面地描述IET过程,导致IET速率分布的中值速率比在0 K下完全优化结构获得的IET速率更快。最后,确定初始IET速率的两个最重要标准是激发态连接基上的电子密度百分比以及激发态能量处可用的半导体受体态数量。这两者都可以从理论的 或半经验水平的相对简单的电子结构计算中获得,因此可用于对具有所需特性的染料进行快速筛选。