Suppr超能文献

一种用于低秩扰动特征值问题的几何方法。

A geometric method for eigenvalue problems with low-rank perturbations.

作者信息

Anastasio Thomas J, Barreiro Andrea K, Bronski Jared C

机构信息

Department of Molecular and Integrative Physiology and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61820, USA.

Department of Mathematics, Southern Methodist University, PO Box 750156, Dallas, TX 75275, USA.

出版信息

R Soc Open Sci. 2017 Sep 27;4(9):170390. doi: 10.1098/rsos.170390. eCollection 2017 Sep.

Abstract

We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 , 239-254. (doi:10.1007/s10827-006-0010-x)), a continuum integrator model, and a non-local model of phase separation due to Rubinstein & Sternberg (1992 , 249-264. (doi:10.1093/imamat/48.3.249)).

摘要

我们考虑寻找一个算子谱的问题,该算子具有一个易于理解的算子的低秩(秩一或秩二)非正规扰动形式,这是由许多具有这种形式的应用问题所推动的。我们利用该系统是一个已解决问题的低秩扰动这一事实,结合经典微分几何的一个简单概念(一族曲线的包络)来全面分析谱。我们使用这些技术来分析这种形式的三个问题:Anastasio和Gad(2007年,239 - 254页。(doi:10.1007/s10827 - 006 - 0010 - x))提出的眼动整合器模型、一个连续统整合器模型以及Rubinstein和Sternberg(1992年,249 - 264页。(doi:10.1093/imamat/48.3.249))提出的相分离非局部模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3671/5627089/ba23a30d9ece/rsos170390-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验