Suppr超能文献

基于图形处理器的加速自适应反距离加权插值算法

Accelerating adaptive inverse distance weighting interpolation algorithm on a graphics processing unit.

作者信息

Mei Gang, Xu Liangliang, Xu Nengxiong

机构信息

School of Engineering and Technology, China University of Geosciences, Beijing, People's Republic of China.

出版信息

R Soc Open Sci. 2017 Sep 20;4(9):170436. doi: 10.1098/rsos.170436. eCollection 2017 Sep.

Abstract

This paper focuses on designing and implementing parallel adaptive inverse distance weighting (AIDW) interpolation algorithms by using the graphics processing unit (GPU). The AIDW is an improved version of the standard IDW, which can adaptively determine the power parameter according to the data points' spatial distribution pattern and achieve more accurate predictions than those predicted by IDW. In this paper, we first present two versions of the GPU-accelerated AIDW, i.e. the naive version without profiting from the shared memory and the tiled version taking advantage of the shared memory. We also implement the naive version and the tiled version using two data layouts, structure of arrays and array of aligned structures, on both single and double precision. We then evaluate the performance of parallel AIDW by comparing it with its corresponding serial algorithm on three different machines equipped with the GPUs GT730M, M5000 and K40c. The experimental results indicate that: (i) there is no significant difference in the computational efficiency when different data layouts are employed; (ii) the tiled version is always slightly faster than the naive version; and (iii) on single precision the achieved speed-up can be up to 763 (on the GPU M5000), while on double precision the obtained highest speed-up is 197 (on the GPU K40c). To benefit the community, all source code and testing data related to the presented parallel AIDW algorithm are publicly available.

摘要

本文着重介绍如何利用图形处理器(GPU)设计并实现并行自适应反距离加权(AIDW)插值算法。AIDW是标准反距离加权(IDW)的改进版本,它能够根据数据点的空间分布模式自适应地确定幂参数,从而实现比IDW更精确的预测。在本文中,我们首先展示了两种GPU加速的AIDW版本,即未利用共享内存的朴素版本和利用共享内存的平铺版本。我们还在单精度和双精度下,使用数组结构和对齐结构数组这两种数据布局实现了朴素版本和平铺版本。然后,我们在配备了GT730M、M5000和K40c这三款GPU的三台不同机器上,将并行AIDW与其对应的串行算法进行比较,以此评估并行AIDW的性能。实验结果表明:(i)采用不同数据布局时,计算效率没有显著差异;(ii)平铺版本总是比朴素版本稍快;(iii)在单精度下,加速比可达763(在GPU M5000上),而在双精度下,获得的最高加速比为197(在GPU K40c上)。为了方便学术界使用,与所提出的并行AIDW算法相关的所有源代码和测试数据均已公开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f159/5627094/1cdbeb94821c/rsos170436-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验