Roy S, Borzì A, Habbal A
Institut für Mathematik, Universität Würzburg, Emil-Fischer-Strasse 30, 97074 Würzburg, Germany.
Université Côte d'Azur, Inria, CNRS, LJAD, UMR 7351, Parc Valrose, 06108 Nice, France.
R Soc Open Sci. 2017 Sep 13;4(9):170648. doi: 10.1098/rsos.170648. eCollection 2017 Sep.
A new approach to modelling pedestrians' avoidance dynamics based on a Fokker-Planck (FP) Nash game framework is presented. In this framework, two interacting pedestrians are considered, whose motion variability is modelled through the corresponding probability density functions (PDFs) governed by FP equations. Based on these equations, a Nash differential game is formulated where the game strategies represent controls aiming at avoidance by minimizing appropriate collision cost functionals. The existence of Nash equilibria solutions is proved and characterized as a solution to an optimal control problem that is solved numerically. Results of numerical experiments are presented that successfully compare the computed Nash equilibria to the output of real experiments (conducted with humans) for four test cases.
提出了一种基于福克-普朗克(FP)纳什博弈框架对行人避撞动力学进行建模的新方法。在该框架中,考虑了两个相互作用的行人,其运动变异性通过由FP方程控制的相应概率密度函数(PDF)进行建模。基于这些方程,构建了一个纳什微分博弈,其中博弈策略表示通过最小化适当的碰撞成本泛函来实现避撞的控制。证明了纳什均衡解的存在性,并将其表征为一个通过数值求解的最优控制问题的解。给出了数值实验结果,成功地将计算得到的纳什均衡与四个测试案例的实际实验(以人为对象进行)输出进行了比较。