Suppr超能文献

惠更斯时钟再探。

Huygens' clocks revisited.

作者信息

Willms Allan R, Kitanov Petko M, Langford William F

机构信息

Department of Mathematics and Statistics, University of Guelph, Guelph Ontario, Canada N1G 2W1.

Department of Mathematics and Statistics, University of Ottawa, Ottawa Ontario K1N 6N5.

出版信息

R Soc Open Sci. 2017 Sep 6;4(9):170777. doi: 10.1098/rsos.170777. eCollection 2017 Sep.

Abstract

In 1665, Huygens observed that two identical pendulum clocks, weakly coupled through a heavy beam, soon synchronized with the same period and amplitude but with the two pendula swinging in opposite directions. This behaviour is now called anti-phase synchronization. This paper presents an analysis of the behaviour of a large class of coupled identical oscillators, including Huygens' clocks, using methods of equivariant bifurcation theory. The equivariant normal form for such systems is developed and the possible solutions are characterized. The transformation of the physical system parameters to the normal form parameters is given explicitly and applied to the physical values appropriate for Huygens' clocks, and to those of more recent studies. It is shown that Huygens' physical system could only exhibit anti-phase motion, explaining why Huygens observed exclusively this. By contrast, some more recent researchers have observed in-phase or other more complicated motion in their own experimental systems. Here, it is explained which physical characteristics of these systems allow for the existence of these other types of stable solutions. The present analysis not only accounts for these previously observed solutions in a unified framework, but also introduces behaviour not classified by other authors, such as a synchronized toroidal breather and a chaotic toroidal breather.

摘要

1665年,惠更斯观察到,两个完全相同的摆钟通过一根重梁微弱耦合,很快就会以相同的周期和振幅同步,但两个摆锤的摆动方向相反。这种行为现在被称为反相同步。本文运用等变分岔理论的方法,对包括惠更斯钟在内的一大类耦合相同振荡器的行为进行了分析。推导了此类系统的等变正规形,并对可能的解进行了表征。明确给出了物理系统参数到正规形参数的变换,并将其应用于适合惠更斯钟的物理值以及最近研究的物理值。结果表明,惠更斯的物理系统只能表现出反相运动,这就解释了为什么惠更斯只观察到了这种现象。相比之下,一些近期的研究人员在他们自己的实验系统中观察到了同相或其他更复杂的运动。这里解释了这些系统的哪些物理特性允许存在这些其他类型的稳定解。本分析不仅在一个统一的框架内解释了这些先前观察到的解,还引入了其他作者未分类的行为,如同步环形呼吸子和混沌环形呼吸子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4612/5627120/09d73c3e8f52/rsos170777-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验