Department of Physics, Indian Institute of Technology, Kharagpur-721303, India.
Nanoscale. 2017 Oct 19;9(40):15591-15597. doi: 10.1039/c7nr05974d.
Chemical doping and plasmonic enhanced photoresponsivity of two dimensional (2D) n-WS/p-Si heterojunctions are demonstrated for the first time. Novel PVP coated Ag intercalation induced synthesis has led to the formation of impurity-free, chemically doped few-layer n-WS with reversed conductivity following the Maxwell-Wagner-Sillars interfacial effect. The resultant composite film exhibits excellent stability and tunable plasmonic absorption due to silver nanoparticles of different sizes. A sharp band-edge absorption of the hybrid material indicates the presence of spin-orbit coupled direct band gap transitions in WS layers, in addition to a broader plasmonic peak attributed to Ag nanoparticles. Stabilized Ag-nanoparticle (∼4-6 nm) embedded electron rich n-WS has been used to fabricate plasmon enhanced, silicon compatible heterojunction photodetectors. The detectors exhibited superior properties, possessing a photo-to-dark current ratio of ∼10, a very high responsivity (8.0 A W) and an EQE of 2000% under 10 V bias with a broad spectral photoresponse in the wavelength range of 400-1100 nm. The results provide a new paradigm for intercalant impurity-free metal nanoparticle assisted exfoliation of n-type few-layer WS, with the nanoparticles playing a dual role towards the realization of 2D materials based broadband heterojunction optoelectronic devices by inducing chemical doping as well as tunable plasmon enhanced absorption.
首次展示了二维(2D)n-WS/p-Si 异质结的化学掺杂和等离子体增强光响应性。通过新颖的 PVP 包覆 Ag 插层诱导合成,形成了无杂质、化学掺杂的少层 n-WS,其电导率在 Maxwell-Wagner-Sillars 界面效应的作用下发生反转。由于不同尺寸的银纳米粒子,所得复合膜表现出优异的稳定性和可调谐的等离子体吸收。杂化材料的尖锐带边吸收表明 WS 层中存在自旋轨道耦合的直接带隙跃迁,此外还存在归因于 Ag 纳米粒子的较宽等离子体峰。稳定的 Ag 纳米粒子(∼4-6nm)嵌入富电子 n-WS 已用于制造等离子体增强、与硅兼容的异质结光电探测器。该探测器表现出优异的性能,在 10V 偏压下具有约 10 的光电流与暗电流比、非常高的响应度(8.0AW)和 2000%的 EQE,以及在 400-1100nm 波长范围内的宽带光响应。结果为无插层杂质的金属纳米粒子辅助剥离 n 型少层 WS 提供了一个新的范例,纳米粒子在实现基于二维材料的宽带异质结光电子器件方面发挥着双重作用,既能诱导化学掺杂,又能增强可调谐的等离子体吸收。