Department of Materials Science and Engineering, College of Engineering, Peking University , Beijing 100871, China.
Center for Composite Materials and Structures, Harbin Institute of Technology , Harbin 150080, China.
ACS Appl Mater Interfaces. 2017 Nov 1;9(43):37813-37822. doi: 10.1021/acsami.7b12095. Epub 2017 Oct 17.
Metal-organic frameworks (MOFs) have many promising applications in energy and environmental areas such as gas separation, catalysis, supercapacitors, and batteries; the key toward those applications is controlled pyrolysis which can tailor the porous structure, improve electrical conductivity, and expose metal ions in MOFs. Here, we present a systematic study on the structural evolution of zeolitic imidazolate frameworks hybridized on carbon nanotubes (CNTs) during the carbonization process. We show that a number of typical products can be obtained, depending on the annealing time, including (1) CNTs wrapped by relatively thick carbon layers, (2) CNTs grafted by ZnO nanoparticles which are covered by thin nitrogen-doped carbon layers, and (3) CNTs grafted by aggregated ZnO nanoparticles. We also investigated the electrochemical properties of those hybrid structures as freestanding membrane electrodes for lithium ion batteries, and the second one (CNT-supported ZnO covered by N-doped carbon) shows the best performance with a high specific capacity (850 mA h/g at a current density of 100 mA/g) and excellent cycling stability. Our results indicate that tailoring and optimizing the MOF-CNT hybrid structure is essential for developing high-performance energy storage systems.
金属-有机骨架(MOFs)在能源和环境领域有许多有前途的应用,如气体分离、催化、超级电容器和电池;实现这些应用的关键是可控热解,它可以调整多孔结构、提高电导率并暴露 MOFs 中的金属离子。在这里,我们对碳纳米管(CNTs)上的沸石咪唑骨架杂化材料在碳化过程中的结构演变进行了系统研究。我们表明,取决于退火时间,可以得到许多典型的产物,包括(1)被相对较厚的碳层包裹的 CNTs,(2)被 ZnO 纳米粒子接枝的 CNTs,其被薄的氮掺杂碳层覆盖,以及(3)被聚集的 ZnO 纳米粒子接枝的 CNTs。我们还研究了这些杂化结构作为锂离子电池的独立膜电极的电化学性能,其中第二种(CNT 支撑的 ZnO 被 N 掺杂的碳覆盖)表现出最好的性能,具有高比容量(在 100 mA/g 的电流密度下为 850 mA h/g)和出色的循环稳定性。我们的结果表明,调整和优化 MOF-CNT 杂化结构对于开发高性能储能系统至关重要。