School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Chem Rev. 2022 Jun 8;122(11):10087-10125. doi: 10.1021/acs.chemrev.1c00978. Epub 2022 Apr 21.
Metal-organic frameworks (MOFs) have recently emerged as ideal electrode materials and precursors for electrochemical energy storage and conversion (EESC) owing to their large specific surface areas, highly tunable porosities, abundant active sites, and diversified choices of metal nodes and organic linkers. Both MOF-based and MOF-derived materials in powder form have been widely investigated in relation to their synthesis methods, structure and morphology controls, and performance advantages in targeted applications. However, to engage them for energy applications, both binders and additives would be required to form postprocessed electrodes, fundamentally eliminating some of the active sites and thus degrading the superior effects of the MOF-based/derived materials. The advancement of freestanding electrodes provides a new promising platform for MOF-based/derived materials in EESC thanks to their apparent merits, including fast electron/charge transmission and seamless contact between active materials and current collectors. Benefiting from the synergistic effect of freestanding structures and MOF-based/derived materials, outstanding electrochemical performance in EESC can be achieved, stimulating the increasing enthusiasm in recent years. This review provides a timely and comprehensive overview on the structural features and fabrication techniques of freestanding MOF-based/derived electrodes. Then, the latest advances in freestanding MOF-based/derived electrodes are summarized from electrochemical energy storage devices to electrocatalysis. Finally, insights into the currently faced challenges and further perspectives on these feasible solutions of freestanding MOF-based/derived electrodes for EESC are discussed, aiming at providing a new set of guidance to promote their further development in scale-up production and commercial applications.
金属-有机骨架(MOFs)由于其具有大的比表面积、高度可调的孔隙率、丰富的活性位点以及金属节点和有机连接体的多样化选择,最近已成为电化学储能和转换(EESC)的理想电极材料和前体。基于 MOF 和 MOF 衍生的粉末材料已广泛研究了其合成方法、结构和形态控制,以及在目标应用中的性能优势。然而,为了将它们用于能源应用,需要使用粘合剂和添加剂来形成后处理电极,这从根本上消除了一些活性位点,从而降低了基于 MOF/衍生材料的优越效果。由于其明显的优点,包括快速的电子/电荷传输和活性材料与集电器之间的无缝接触,独立式电极的发展为基于 MOF/衍生材料在 EESC 中的应用提供了一个新的有前途的平台。得益于独立式结构和基于 MOF/衍生材料的协同效应,可以实现 EESC 中的出色电化学性能,这激发了近年来越来越多的研究兴趣。本综述及时全面地介绍了基于 MOF 的独立式电极的结构特征和制造技术。然后,从电化学储能装置到电催化,总结了基于 MOF 的独立式电极的最新进展。最后,讨论了当前面临的挑战以及对这些基于 MOF 的独立式电极在 EESC 中可行解决方案的进一步展望,旨在为促进其在规模化生产和商业应用中的进一步发展提供新的指导。