Suppr超能文献

评估美国《食品安全现代化法案》中关于种植农产品的农业用水微生物质量的农产品安全规则标准。

Evaluating the U.S. Food Safety Modernization Act Produce Safety Rule Standard for Microbial Quality of Agricultural Water for Growing Produce.

作者信息

Havelaar Arie H, Vazquez Kathleen M, Topalcengiz Zeynal, Muñoz-Carpena Rafael, Danyluk Michelle D

机构信息

Emerging Pathogens Institute, Institute for Sustainable Food Systems, Department of Animal Sciences (ORCID: http://orcid.org/0000-0002-6456-5460).

Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32610, USA.

出版信息

J Food Prot. 2017 Nov 1;80(11):1832-1841. doi: 10.4315/0362-028X.JFP-17-122.

Abstract

The U.S. Food and Drug Administration (FDA) has defined standards for the microbial quality of agricultural surface water used for irrigation. According to the FDA produce safety rule (PSR), a microbial water quality profile requires analysis of a minimum of 20 samples for Escherichia coli over 2 to 4 years. The geometric mean (GM) level of E. coli should not exceed 126 CFU/100 mL, and the statistical threshold value (STV) should not exceed 410 CFU/100 mL. The water quality profile should be updated by analysis of a minimum of five samples per year. We used an extensive set of data on levels of E. coli and other fecal indicator organisms, the presence or absence of Salmonella, and physicochemical parameters in six agricultural irrigation ponds in West Central Florida to evaluate the empirical and theoretical basis of this PSR. We found highly variable log-transformed E. coli levels, with standard deviations exceeding those assumed in the PSR by up to threefold. Lognormal distributions provided an acceptable fit to the data in most cases but may underestimate extreme levels. Replacing censored data with the detection limit of the microbial tests underestimated the true variability, leading to biased estimates of GM and STV. Maximum likelihood estimation using truncated lognormal distributions is recommended. Twenty samples are not sufficient to characterize the bacteriological quality of irrigation ponds, and a rolling data set of five samples per year used to update GM and STV values results in highly uncertain results and delays in detecting a shift in water quality. In these ponds, E. coli was an adequate predictor of the presence of Salmonella in 150-mL samples, and turbidity was a second significant variable. The variability in levels of E. coli in agricultural water was higher than that anticipated when the PSR was finalized, and more detailed information based on mechanistic modeling is necessary to develop targeted risk management strategies.

摘要

美国食品药品监督管理局(FDA)已为用于灌溉的农业地表水的微生物质量制定了标准。根据FDA的农产品安全规则(PSR),微生物水质概况要求在2至4年内对至少20个样本进行大肠杆菌分析。大肠杆菌的几何平均值(GM)不应超过126 CFU/100 mL,统计阈值(STV)不应超过410 CFU/100 mL。水质概况应每年通过分析至少五个样本进行更新。我们使用了佛罗里达州中西部六个农业灌溉池塘中有关大肠杆菌和其他粪便指示生物水平、沙门氏菌的存在与否以及理化参数的大量数据,来评估该PSR的经验和理论基础。我们发现对数转换后的大肠杆菌水平变化很大,标准差比PSR中假设的高出多达三倍。在大多数情况下,对数正态分布能较好地拟合数据,但可能会低估极端水平。用微生物检测的检测限替代截尾数据会低估真实变异性,导致GM和STV的估计有偏差。建议使用截断对数正态分布进行最大似然估计。20个样本不足以表征灌溉池塘的细菌学质量,每年使用五个样本的滚动数据集来更新GM和STV值会导致结果高度不确定,并延迟检测水质变化。在这些池塘中,对于150毫升样本,大肠杆菌是沙门氏菌存在的充分预测指标,浊度是第二个重要变量。农业用水中大肠杆菌水平的变异性高于PSR最终确定时的预期,需要基于机理模型的更详细信息来制定有针对性的风险管理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验