利用自适应神经模糊推理系统预测水库上游集水区的生化需氧量。

Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system.

作者信息

Chiu Yung-Chia, Chiang Chih-Wei, Lee Tsung-Yu

机构信息

Institute of Applied Geosciences, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan E-mail:

Department of Geography, National Taiwan Normal University, Taipei, Taiwan.

出版信息

Water Sci Technol. 2017 Oct;76(7-8):1739-1753. doi: 10.2166/wst.2017.359.

Abstract

The aim of this study is to examine the potential of adaptive neuro fuzzy inference system (ANFIS) to estimate biochemical oxygen demand (BOD). To illustrate the applicability of ANFIS method, the upstream catchment of Feitsui Reservoir in Taiwan is chosen as the case study area. The appropriate input variables used to develop the ANFIS models are determined based on the t-test. The results obtained by ANFIS are compared with those by multiple linear regression (MLR) and artificial neural networks (ANNs). Simulated results show that the identified ANFIS model is superior to the traditional MLR and nonlinear ANNs models in terms of the performance evaluated by the Pearson coefficient of correlation, the root mean square error, the mean absolute percentage, and the mean absolute error. These results indicate that ANFIS models are more suitable than ANNs or MLR models to predict the nonlinear relationship within the variables caused by the complexity of aquatic systems and to produce the best fit of the measured BOD concentrations. ANFIS can be seen as a powerful predictive alternative to traditional water quality modeling techniques and extended to other areas to improve the understanding of river pollution trends.

摘要

本研究旨在探讨自适应神经模糊推理系统(ANFIS)估算生化需氧量(BOD)的潜力。为说明ANFIS方法的适用性,选取台湾翡翠水库上游集水区作为案例研究区域。基于t检验确定用于开发ANFIS模型的合适输入变量。将ANFIS获得的结果与多元线性回归(MLR)和人工神经网络(ANNs)的结果进行比较。模拟结果表明,就通过皮尔逊相关系数、均方根误差、平均绝对百分比和平均绝对误差评估的性能而言,所识别的ANFIS模型优于传统的MLR和非线性ANNs模型。这些结果表明,ANFIS模型比ANNs或MLR模型更适合预测由水生系统复杂性导致的变量之间的非线性关系,并能对测量的BOD浓度进行最佳拟合。ANFIS可被视为传统水质建模技术的一种强大预测替代方法,并可扩展到其他领域,以增进对河流污染趋势的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索