文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用从红毛丹(Nephelium lappaceum)果皮中提取的生物炭,对人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和多元线性回归(MLR)进行比较研究,以建立从水溶液中吸附 Cu(II)的模型。

Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.

机构信息

Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.

出版信息

Environ Monit Assess. 2020 Jun 17;192(7):439. doi: 10.1007/s10661-020-08268-4.


DOI:10.1007/s10661-020-08268-4
PMID:32556670
Abstract

Presence of copper within water bodies deteriorates human health and degrades natural environment. This heavy metal in water is treated using a promising biochar derived from rambutan (Nephelium lappaceum) peel through slow pyrolysis. This research compares the efficacies of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models and evaluates their capability in estimating the adsorption efficiency of biochar for the removal of Cu (II) ions based on 480 experimental sets obtained in a laboratory batch study. The effects of operational parameters such as contact time, operating temperature, biochar dosage, and initial Cu (II) ion concentration on removing Cu (II) ions were investigated. Eleven different training algorithms in ANN and 8 different membership functions in ANFIS were compared statistically and evaluated in terms of estimation errors, which are root mean squared error (RMSE), mean absolute error (MAE), and accuracy. The effects of number of hidden neuron in ANN model and fuzzy set combination in ANFIS were studied. In this study, ANFIS model with Gaussian membership function and fuzzy set combination of [4 5 2 3] was found to be the best method, with accuracy of 90.24% and 87.06% for training and testing dataset, respectively. Contribution of this study is that ANN, ANFIS, and MLR modeling techniques were used for the first time to study the adsorption of Cu (II) ions from aqueous solutions using rambutan peel biochar.

摘要

水体中铜的存在会损害人类健康并破坏自然环境。水中的这种重金属可以通过慢热解从红毛丹(Nephelium lappaceum)果皮中提取出一种有前途的生物炭进行处理。本研究比较了人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和多元线性回归(MLR)模型的效果,并评估了它们根据实验室批量研究中获得的 480 组实验数据估算生物炭去除 Cu(II)离子吸附效率的能力。考察了接触时间、操作温度、生物炭用量和初始 Cu(II)离子浓度等操作参数对去除 Cu(II)离子的影响。在 ANN 中比较了 11 种不同的训练算法,在 ANFIS 中比较了 8 种不同的隶属函数,并从估计误差(均方根误差(RMSE)、平均绝对误差(MAE)和准确性)方面进行了统计比较和评估。研究了 ANN 模型中隐藏神经元数量和 ANFIS 中模糊集组合的影响。在这项研究中,发现具有高斯隶属函数和模糊集组合[4 5 2 3]的 ANFIS 模型是最佳方法,对于训练数据集和测试数据集的准确性分别为 90.24%和 87.06%。本研究的贡献在于首次使用 ANN、ANFIS 和 MLR 建模技术研究了从水溶液中用红毛丹果皮生物炭吸附 Cu(II)离子的情况。

相似文献

[1]
Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.

Environ Monit Assess. 2020-6-17

[2]
Predictive modeling of copper (II) adsorption from aqueous solutions by sawdust: a comparative analysis of adaptive neuro-fuzzy interference system (ANFIS) and artificial neural network (ANN) approaches.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2024

[3]
Adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) modelling of Cu, Cd, and Pb adsorption onto tropical soils.

Environ Sci Pollut Res Int. 2023-3

[4]
Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.

Environ Sci Pollut Res Int. 2021-5

[5]
Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.

Environ Sci Pollut Res Int. 2018-11-11

[6]
Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

J Sci Food Agric. 2016-10

[7]
A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm.

Chemosphere. 2022-1

[8]
Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists.

Bioorg Med Chem. 2007-6-15

[9]
Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

Environ Monit Assess. 2013-9-21

[10]
Prediction of effect of natural antioxidant compounds on hazelnut oil oxidation by adaptive neuro-fuzzy inference system and artificial neural network.

J Food Sci. 2011-4-14

引用本文的文献

[1]
Comparative analysis of machine learning techniques for temperature and humidity prediction in photovoltaic environments.

Sci Rep. 2025-5-5

[2]
Heavy metal adsorption efficiency prediction using biochar properties: a comparative analysis for ensemble machine learning models.

Sci Rep. 2025-4-18

[3]
A machine learning approach for corrosion rate modeling in Patna water distribution network of Bihar.

Sci Rep. 2025-4-5

[4]
Predicting removal of arsenic from groundwater by iron based filters using deep neural network models.

Sci Rep. 2024-11-2

[5]
Optimization of ultrasound-assisted extraction of bioactive chemicals from (L.) R.Br. using response surface methodology and adaptive neuro-fuzzy inference system.

Food Sci Biotechnol. 2023-6-17

[6]
Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security.

Heliyon. 2023-7-11

[7]
Article Application of neural network in metal adsorption using biomaterials (BMs): a review.

Env Sci Adv. 2023

[8]
Analysis of Sports Injury Estimation Model Based on Mutation Fuzzy Neural Network.

Comput Intell Neurosci. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索