Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
Environ Monit Assess. 2020 Jun 17;192(7):439. doi: 10.1007/s10661-020-08268-4.
Presence of copper within water bodies deteriorates human health and degrades natural environment. This heavy metal in water is treated using a promising biochar derived from rambutan (Nephelium lappaceum) peel through slow pyrolysis. This research compares the efficacies of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models and evaluates their capability in estimating the adsorption efficiency of biochar for the removal of Cu (II) ions based on 480 experimental sets obtained in a laboratory batch study. The effects of operational parameters such as contact time, operating temperature, biochar dosage, and initial Cu (II) ion concentration on removing Cu (II) ions were investigated. Eleven different training algorithms in ANN and 8 different membership functions in ANFIS were compared statistically and evaluated in terms of estimation errors, which are root mean squared error (RMSE), mean absolute error (MAE), and accuracy. The effects of number of hidden neuron in ANN model and fuzzy set combination in ANFIS were studied. In this study, ANFIS model with Gaussian membership function and fuzzy set combination of [4 5 2 3] was found to be the best method, with accuracy of 90.24% and 87.06% for training and testing dataset, respectively. Contribution of this study is that ANN, ANFIS, and MLR modeling techniques were used for the first time to study the adsorption of Cu (II) ions from aqueous solutions using rambutan peel biochar.
水体中铜的存在会损害人类健康并破坏自然环境。水中的这种重金属可以通过慢热解从红毛丹(Nephelium lappaceum)果皮中提取出一种有前途的生物炭进行处理。本研究比较了人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和多元线性回归(MLR)模型的效果,并评估了它们根据实验室批量研究中获得的 480 组实验数据估算生物炭去除 Cu(II)离子吸附效率的能力。考察了接触时间、操作温度、生物炭用量和初始 Cu(II)离子浓度等操作参数对去除 Cu(II)离子的影响。在 ANN 中比较了 11 种不同的训练算法,在 ANFIS 中比较了 8 种不同的隶属函数,并从估计误差(均方根误差(RMSE)、平均绝对误差(MAE)和准确性)方面进行了统计比较和评估。研究了 ANN 模型中隐藏神经元数量和 ANFIS 中模糊集组合的影响。在这项研究中,发现具有高斯隶属函数和模糊集组合[4 5 2 3]的 ANFIS 模型是最佳方法,对于训练数据集和测试数据集的准确性分别为 90.24%和 87.06%。本研究的贡献在于首次使用 ANN、ANFIS 和 MLR 建模技术研究了从水溶液中用红毛丹果皮生物炭吸附 Cu(II)离子的情况。
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2024
Environ Sci Pollut Res Int. 2018-11-11
Comput Intell Neurosci. 2021