Suppr超能文献

布氏锥虫中的线粒体双编码基因。

Mitochondrial dual-coding genes in Trypanosoma brucei.

作者信息

Kirby Laura E, Koslowsky Donna

机构信息

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America.

出版信息

PLoS Negl Trop Dis. 2017 Oct 9;11(10):e0005989. doi: 10.1371/journal.pntd.0005989. eCollection 2017 Oct.

Abstract

Trypanosoma brucei is transmitted between mammalian hosts by the tsetse fly. In the mammal, they are exclusively extracellular, continuously replicating within the bloodstream. During this stage, the mitochondrion lacks a functional electron transport chain (ETC). Successful transition to the fly, requires activation of the ETC and ATP synthesis via oxidative phosphorylation. This life cycle leads to a major problem: in the bloodstream, the mitochondrial genes are not under selection and are subject to genetic drift that endangers their integrity. Exacerbating this, T. brucei undergoes repeated population bottlenecks as they evade the host immune system that would create additional forces of genetic drift. These parasites possess several unique genetic features, including RNA editing of mitochondrial transcripts. RNA editing creates open reading frames by the guided insertion and deletion of U-residues within the mRNA. A major question in the field has been why this metabolically expensive system of RNA editing would evolve and persist. Here, we show that many of the edited mRNAs can alter the choice of start codon and the open reading frame by alternative editing of the 5' end. Analyses of mutational bias indicate that six of the mitochondrial genes may be dual-coding and that RNA editing allows access to both reading frames. We hypothesize that dual-coding genes can protect genetic information by essentially hiding a non-selected gene within one that remains under selection. Thus, the complex RNA editing system found in the mitochondria of trypanosomes provides a unique molecular strategy to combat genetic drift in non-selective conditions.

摘要

布氏锥虫通过采采蝇在哺乳动物宿主之间传播。在哺乳动物体内,它们仅存在于细胞外,在血液中持续复制。在此阶段,线粒体缺乏功能性电子传递链(ETC)。成功转变至采采蝇体内,则需要激活ETC并通过氧化磷酸化合成ATP。这种生命周期导致了一个主要问题:在血液中,线粒体基因不受选择,易受遗传漂变影响,从而危及它们的完整性。更糟糕的是,布氏锥虫在躲避宿主免疫系统时经历多次种群瓶颈,这会产生额外的遗传漂变力量。这些寄生虫具有几个独特的遗传特征,包括线粒体转录本的RNA编辑。RNA编辑通过在mRNA内引导插入和删除U残基来创建开放阅读框。该领域的一个主要问题是,为何这种代谢成本高昂的RNA编辑系统会进化并持续存在。在这里,我们表明许多经过编辑的mRNA可以通过5'端的替代编辑改变起始密码子的选择和开放阅读框。对突变偏好的分析表明,六个线粒体基因可能是双编码的,RNA编辑允许访问两个阅读框。我们假设双编码基因可以通过将一个未被选择的基因隐藏在一个仍处于选择状态的基因中来保护遗传信息。因此,在锥虫线粒体中发现的复杂RNA编辑系统提供了一种独特的分子策略,以应对非选择性条件下的遗传漂变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/844d/5650466/eb3b4ef5df25/pntd.0005989.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验