Kellner T A, Patience J F
J Anim Sci. 2017 Sep;95(9):3984-3995. doi: 10.2527/jas2017.1824.
The objective was to determine the energy concentration of a diverse array of dietary fat sources and, from these data, develop regression equations that explain differences based on chemical composition. A total of 120 Genetiporc 6.0 × Genetiporc F25 (PIC, Inc., Hendersonville, TN) individually housed barrows were studied for 56 d. These barrows (initial BW of 9.9 ± 0.6 kg) were randomly allotted to 1 of 15 dietary treatments. Each experimental diet included 95% of a corn-soybean meal basal diet plus 5% either corn starch or 1 of 14 dietary fat sources. The 14 dietary fat sources (animal-vegetable blend, canola oil, choice white grease source A, choice white grease source B, coconut oil, corn oil source A, corn oil source B, fish oil, flaxseed oil, palm oil, poultry fat, soybean oil source A, soybean oil source B, and tallow) were selected to provide a diverse and robust range of unsaturated fatty acid:SFA ratios (U:S). Pigs were limit-fed experimental diets from d 0 to 10 and from d 46 to 56, providing a 7-d adaption for fecal collection on d 7 to 10 (13 kg BW) and d 53 to 56 (50 kg BW). At 13 kg BW, the average energy content of the 14 sources was 8.42 Mcal DE/kg, 8.26 Mcal ME/kg, and 7.27 Mcal NE/kg. At 50 kg BW, the average energy content was 8.45 Mcal DE/kg, 8.28 Mcal ME/kg, and 7.29 Mcal NE/kg. At 13 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 9.363 + [0.097 × (FFA, %)] - [0.016 × omega-6:omega-3 fatty acids ratio] - [1.240 × (arachidic acid, %)] - [5.054 × (insoluble impurities, %)] + [0.014 × (palmitic acid, %)] ( = 0.008, = 0.82). At 50 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 8.357 + [0.189 × U:S] - [0.195 × (FFA, %)] - [6.768 × (behenic acid, %)] + [0.024 × (PUFA, %)] ( = 0.002, = 0.81). In summary, the chemical composition of dietary fat explained a large degree of the variation observed in the energy content of dietary fat sources at both 13 and 50 kg BW.
目的是确定多种膳食脂肪来源的能量浓度,并根据这些数据建立回归方程,以解释基于化学成分的差异。总共对120头Genetiporc 6.0×Genetiporc F25(PIC公司,田纳西州亨德森维尔)单栏饲养的公猪进行了56天的研究。这些公猪(初始体重9.9±0.6千克)被随机分配到15种日粮处理中的一种。每种试验日粮包含95%的玉米-豆粕基础日粮,外加5%的玉米淀粉或14种膳食脂肪来源中的一种。选择这14种膳食脂肪来源(动植物混合油、菜籽油、特级白油来源A、特级白油来源B、椰子油、玉米油来源A、玉米油来源B、鱼油、亚麻籽油、棕榈油、家禽脂肪、大豆油来源A、大豆油来源B和牛脂)以提供不饱和脂肪酸与饱和脂肪酸比例(U:S)的多样化且丰富的范围。从第0天到第10天以及从第46天到第56天对公猪进行限饲,在第7天到第10天(体重13千克)和第53天到第56天(体重50千克)提供7天的粪便收集适应期。在体重13千克时,14种来源的平均能量含量为8.42兆卡消化能/千克、8.26兆卡代谢能/千克和7.27兆卡净能/千克。在体重50千克时,平均能量含量为8.45兆卡消化能/千克、8.28兆卡代谢能/千克和7.29兆卡净能/千克。在体重13千克时,日粮脂肪消化能含量的变化可由以下方程解释:消化能(兆卡/千克)=9.363 + [0.097×(游离脂肪酸,%)] - [0.016×ω-6:ω-3脂肪酸比例] - [1.240×(花生酸,%)] - [5.054×(不溶性杂质,%)] + [0.014×(棕榈酸,%)](R² = 0.008,P = 0.82)。在体重50千克时,日粮脂肪消化能含量的变化可由以下方程解释:消化能(兆卡/千克)=8.357 + [0.189×U:S] - [0.195×(游离脂肪酸,%)] - [6.768×(山嵛酸,%)] + [0.024×(多不饱和脂肪酸,%)](R² = 0.002,P = 0.81)。总之,膳食脂肪的化学成分在很大程度上解释了在体重13千克和50千克时观察到的膳食脂肪来源能量含量的变化。