Çaglayan Melike, Wilson Samuel H
Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
J Radiat Res. 2017 Sep 1;58(5):603-607. doi: 10.1093/jrr/rrx027.
Production of reactive oxygen and nitrogen species (ROS), such as hydrogen peroxide, superoxide and hydroxyl radicals, has been linked to cancer, and these oxidative molecules can damage DNA. Base excision repair (BER), a major repair system maintaining genome stability over a lifespan, has an important role in repairing oxidatively induced DNA damage. Failure of BER leads to toxic consequences in ROS-exposed cells, and ultimately can contribute to the pathobiology of disease. In our previous report, we demonstrated that oxidized nucleotide insertion by DNA polymerase β (pol β) impairs BER due to ligation failure and leads to formation of a cytotoxic repair intermediate. Biochemical and cytotoxic effects of ligation failure could mediate genome stability and influence cancer therapeutics. In this review, we discuss the importance of coordination between pol β and DNA ligase I during BER, and how this could be a fundamental mechanism underlying human diseases such as cancer and neurodegeneration. A summary of this work was presented in a symposium at the International Congress of Radiation Research 2015 in Kyoto, Japan.
活性氧和氮物种(ROS)如过氧化氢、超氧阴离子和羟基自由基的产生与癌症有关,这些氧化分子会损害DNA。碱基切除修复(BER)是一种在整个生命周期中维持基因组稳定性的主要修复系统,在修复氧化诱导的DNA损伤中起着重要作用。BER功能障碍会在暴露于ROS的细胞中导致毒性后果,并最终可能促成疾病的病理生物学过程。在我们之前的报告中,我们证明DNA聚合酶β(polβ)插入氧化核苷酸会因连接失败而损害BER,并导致细胞毒性修复中间体的形成。连接失败的生化和细胞毒性作用可能介导基因组稳定性并影响癌症治疗。在这篇综述中,我们讨论了BER过程中polβ与DNA连接酶I之间协调的重要性,以及这如何可能是诸如癌症和神经退行性变等人类疾病的潜在基本机制。这项工作的总结在2015年于日本京都举行的国际辐射研究大会的一次研讨会上进行了展示。