Suppr超能文献

在碱基切除修复中,针对氧化的 5-甲基胞嘧啶修饰物,Polβ 进行缺口填充、DNA 连接和底物产物的沟道运输。

Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications.

机构信息

Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL32610, USA.

出版信息

DNA Repair (Amst). 2020 Nov;95:102945. doi: 10.1016/j.dnarep.2020.102945. Epub 2020 Aug 14.

Abstract

DNA methylation on cytosine in CpG islands generates 5-methylcytosine (5mC), and further modification of 5mC can result in the oxidized variants 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxy (5caC). Base excision repair (BER) is crucial for both genome maintenance and active DNA demethylation of modified cytosine products and involves substrate-product channeling from nucleotide insertion by DNA polymerase (pol) β to the subsequent ligation step. Here, we report that, in contrast to the pol β mismatch insertion products (dCTP, dATP, and dTTP), the nicked products after pol β dGTP insertion can be ligated by DNA ligase I or DNA ligase III/XRCC1 complex when a 5mC oxidation modification is present opposite in the template position in vitro. A Pol β K280A mutation, which perturbates the stabilization of these base modifications within the active site, hinders the BER ligases. Moreover, the nicked repair intermediates that mimic pol β mismatch insertion products, i.e., with 3'-preinserted dGMP or dTMP opposite templating 5hmC, 5fC or 5caC, can be efficiently ligated, whereas preinserted 3'-dAMP or dCMP mismatches result in failed ligation reactions. These findings herein contribute to our understanding of the insertion tendencies of pol β opposite different cytosine base forms, the ligation properties of DNA ligase I and DNA ligase III/XRCC1 complex in the context of gapped and nicked damage-containing repair intermediates, and the efficiency and fidelity of substrate channeling during the final steps of BER in situations involving oxidative 5mC base modifications in the template strand.

摘要

DNA 胞嘧啶上的 CpG 岛发生甲基化生成 5-甲基胞嘧啶(5mC),5mC 的进一步修饰可以产生氧化变异体 5-羟甲基(5hmC)、5-甲酰基(5fC)和 5-羧基(5caC)。碱基切除修复(BER)对于基因组的维持和修饰的胞嘧啶产物的主动 DNA 去甲基化都至关重要,涉及核苷酸插入物由 DNA 聚合酶(pol)β到随后的连接步骤的底物-产物通道化。在这里,我们报告与 pol β 错配插入产物(dCTP、dATP 和 dTTP)相反,当模板位置上存在 5mC 氧化修饰时,pol β dGTP 插入后的缺口产物可以被 DNA 连接酶 I 或 DNA 连接酶 III/XRCC1 复合物连接。Pol β K280A 突变破坏了这些碱基修饰在活性位点内的稳定,从而阻碍了 BER 连接酶。此外,模拟 pol β 错配插入产物的缺口修复中间体,即在模板位置上有 3'-预插入的 dGMP 或 dTMP 对应 5hmC、5fC 或 5caC 的,都可以被有效连接,而预插入的 3'-dAMP 或 dCMP 错配则导致连接反应失败。这些发现有助于我们理解 pol β 与不同胞嘧啶碱基形式的插入倾向,在含缺口和缺口损伤的修复中间体背景下 DNA 连接酶 I 和 DNA 连接酶 III/XRCC1 复合物的连接性质,以及涉及模板链中氧化 5mC 碱基修饰的情况下 BER 最后步骤中的底物通道化的效率和保真度。

相似文献

4
The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
J Biol Chem. 2021 Sep;297(3):101025. doi: 10.1016/j.jbc.2021.101025. Epub 2021 Jul 30.
5
Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.
DNA Repair (Amst). 2015 Nov;35:85-9. doi: 10.1016/j.dnarep.2015.09.010. Epub 2015 Sep 16.
6
Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1.
Biochemistry. 2010 Jun 15;49(23):4833-40. doi: 10.1021/bi100200c.
7
XRCC1-DNA polymerase beta interaction is required for efficient base excision repair.
Nucleic Acids Res. 2004 May 11;32(8):2550-5. doi: 10.1093/nar/gkh567. Print 2004.
9
XRCC1 prevents toxic PARP1 trapping during DNA base excision repair.
Mol Cell. 2021 Jul 15;81(14):3018-3030.e5. doi: 10.1016/j.molcel.2021.05.009. Epub 2021 Jun 7.
10
Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair.
Mol Cell Biol. 2011 Nov;31(22):4623-32. doi: 10.1128/MCB.05715-11. Epub 2011 Sep 19.

引用本文的文献

3
A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer.
ACS Omega. 2024 Feb 22;9(9):10030-10048. doi: 10.1021/acsomega.3c09780. eCollection 2024 Mar 5.
4
5
Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair.
Nat Commun. 2022 Jul 5;13(1):3860. doi: 10.1038/s41467-022-31585-w.
6
DNA Damage Repair in Brain Tumor Immunotherapy.
Front Immunol. 2022 Jan 13;12:829268. doi: 10.3389/fimmu.2021.829268. eCollection 2021.
8
Dual and Opposite Roles of Reactive Oxygen Species (ROS) in Chagas Disease: Beneficial on the Pathogen and Harmful on the Host.
Oxid Med Cell Longev. 2020 Dec 10;2020:8867701. doi: 10.1155/2020/8867701. eCollection 2020.

本文引用的文献

2
Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation.
J Mol Biol. 2019 May 17;431(11):2068-2081. doi: 10.1016/j.jmb.2019.04.028. Epub 2019 Apr 26.
3
Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β.
J Biol Chem. 2019 May 3;294(18):7194-7201. doi: 10.1074/jbc.RA118.006809. Epub 2019 Mar 18.
5
APE1: A skilled nucleic acid surgeon.
DNA Repair (Amst). 2018 Nov;71:93-100. doi: 10.1016/j.dnarep.2018.08.012. Epub 2018 Aug 23.
6
Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure.
J Radiat Res. 2017 Sep 1;58(5):603-607. doi: 10.1093/jrr/rrx027.
7
Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts.
Nucleic Acids Res. 2017 Sep 29;45(17):10079-10088. doi: 10.1093/nar/gkx654.
8
9
Epigenome Maintenance in Response to DNA Damage.
Mol Cell. 2016 Jun 2;62(5):712-27. doi: 10.1016/j.molcel.2016.04.006.
10
Role of TET enzymes in DNA methylation, development, and cancer.
Genes Dev. 2016 Apr 1;30(7):733-50. doi: 10.1101/gad.276568.115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验