Suppr超能文献

2008 年至 2016 年美国数字筛查乳房 X 光摄影中计算机辅助检测的应用。

Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016.

机构信息

John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois.

Beghou Consulting, Evanston, Illinois.

出版信息

J Am Coll Radiol. 2018 Jan;15(1 Pt A):44-48. doi: 10.1016/j.jacr.2017.08.033. Epub 2017 Oct 6.

Abstract

PURPOSE

Computer-aided detection (CAD) for screening mammography is a software technology designed to improve radiologists' reading performance. Since 2007, multiple Breast Cancer Surveillance Consortium research papers have shown that CAD decreases performance by increasing recalls and decreasing the detection of invasive cancer while increasing the detection of ductal carcinoma in situ. The aim of this study was to test the hypothesis that CAD use by digital mammography facilities would decrease over time.

METHODS

In August 2007, August 2011, and March 2016, the FDA database of certified mammography facilities was accessed, and a random sample of 400 of approximately 8,500 total facilities was generated. In 2008 and 2011, a telephone survey was conducted of the facilities regarding digital mammography and CAD use. In 2016, facility websites were reviewed before calling the facilities. Bonferroni-corrected P values were used to assess statistical differences in the proportion of CAD at digital facilities for the three surveys.

RESULTS

The mean proportion of digital facilities using CAD was 91.4%, including 91.4% (128 of 140) in 2008, 90.2% (238 of 264) in 2011, and 92.3% (358 of 388) in 2016. The difference for 2008 versus 2011 was 1.3% (95% confidence interval [CI], -0.5% to 7.7%), for 2011 versus 2016 was -2.1% (95% CI, -6.9% to 2.7%), and for 2008 versus 2016 was -0.8% (95% CI, -6.7% to 5.0%).

CONCLUSIONS

In three national surveys, it was found that CAD use at US digital screening mammography facilities was stable from 2008 to 2016. This persistent utilization is relevant to the debate on the value of targeting ductal carcinoma in situ in screening.

摘要

目的

计算机辅助检测 (CAD) 是一种用于筛查乳房 X 光摄影的软件技术,旨在提高放射科医生的阅读性能。自 2007 年以来,多个乳腺癌监测联合会的研究论文表明,CAD 通过增加召回率和降低浸润性癌的检出率,同时增加导管原位癌的检出率,从而降低了性能。本研究旨在检验以下假设,即随着时间的推移,数字乳房 X 光摄影设施使用 CAD 的情况会减少。

方法

2007 年 8 月、2011 年 8 月和 2016 年 3 月,访问了 FDA 认证乳房 X 光摄影设施数据库,并从大约 8500 个设施中随机抽取了 400 个设施作为样本。2008 年和 2011 年,对这些设施进行了数字乳房 X 光摄影和 CAD 使用情况的电话调查。2016 年,在给这些设施打电话之前,审查了这些设施的网站。使用 Bonferroni 校正的 P 值来评估这三次调查中数字设施中 CAD 的比例的统计学差异。

结果

使用 CAD 的数字设施的平均比例为 91.4%,其中 2008 年为 91.4%(128/140),2011 年为 90.2%(238/264),2016 年为 92.3%(358/388)。2008 年与 2011 年的差异为 1.3%(95%置信区间[CI],-0.5%至 7.7%),2011 年与 2016 年的差异为-2.1%(95%CI,-6.9%至 2.7%),2008 年与 2016 年的差异为-0.8%(95%CI,-6.7%至 5.0%)。

结论

在三次全国性调查中,发现 2008 年至 2016 年间,美国数字筛查乳房 X 光摄影设施中 CAD 的使用保持稳定。这种持续的使用与针对筛查中的导管原位癌进行靶向治疗的价值的争论有关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验