Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
Institute of Computing Sciences, Poznań University of Technology, 60-965 Poznań, Poland.
Artif Intell Med. 2018 Apr;85:50-63. doi: 10.1016/j.artmed.2017.09.006. Epub 2017 Oct 6.
Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.
糖尿病性视网膜病变是糖尿病最常见的并发症之一。不幸的是,建议对糖尿病患者的眼部眼底进行年度筛查,这太耗费资源了。因此,有必要开发一些工具,以帮助医生确定每位患者的患病风险,以便风险较低的患者可以减少筛查次数,提高资源利用效率。本文探讨了两种从数据中学习到的集成分类器的应用:模糊随机森林和基于优势的粗糙集平衡规则集成。这些分类器使用一小部分代表主要风险因素的属性来确定患者是否有发展为糖尿病性视网膜病变的风险。本研究中获得的特异性和敏感性水平超过 80%。因此,这是朝着构建个性化决策支持系统迈出的成功的第一步,该系统可以帮助医生在日常临床实践中做出决策。