Romero-Aroca Pedro, Baget-Bernaldiz Marc, Navarro-Gil Raul, Feliu Albert, Maarof Najla, Moreno Antonio, Cristiano Julian, Valls Aida
Ophthalmology Department, University Hospital Sant Joan, Institute of Health Research Pere Virgili (IISPV), Universitat Rovira & Virgili, Tarragona, Spain.
Pediatric Department, University Hospital Sant Joan, Institute of Health Research Pere Virgili (IISPV), Universitat Rovira & Virgili, Tarragona, Spain.
Clin Ophthalmol. 2022 Mar 10;16:715-722. doi: 10.2147/OPTH.S351790. eCollection 2022.
The aim of the present study was to build a clinical decision support system (CDSS) that can predict the presence of diabetic retinopathy (DR) in type 1 diabetes (T1DM) patients.
We built two versions of our CDSS to predict the presence of any-type DR and sight-threatening DR (STDR) in T1DM patients. The first version was trained using 324 T1DM and 826 T2DM patients. The second was trained with only the 324 T1DM patients.
The first version achieved an accuracy (ACC) = 0.795, specificity (SP) = 83%, and sensitivity (S) = 65.7% to predict the presence of any-DR, and an ACC = 0.918, SP = 87.1% and S = 87.8% for STDR. The second model achieved ACC = 0.799, SP = 87.5% and S = 86.3% when predicting any-DR and ACC = 0.937, SP = 90.9% and S = 83.0% for STDR.
The two models better predict STDR than any-DR in T1DM patients. We will need a larger sample to strengthen our results.
本研究的目的是构建一个临床决策支持系统(CDSS),该系统能够预测1型糖尿病(T1DM)患者是否患有糖尿病视网膜病变(DR)。
我们构建了两个版本的CDSS,用于预测T1DM患者是否存在任何类型的DR以及是否存在威胁视力的DR(STDR)。第一个版本使用324例T1DM患者和826例T2DM患者进行训练。第二个版本仅使用324例T1DM患者进行训练。
第一个版本预测任何DR的准确率(ACC)=0.795,特异性(SP)=83%,敏感性(S)=65.7%;预测STDR的ACC=0.918,SP=87.1%,S=87.8%。第二个模型预测任何DR时的ACC=0.799,SP=87.5%,S=86.3%;预测STDR时的ACC=0.937,SP=90.9%,S=83.0%。
在T1DM患者中,这两个模型对STDR的预测优于对任何DR的预测。我们需要更大的样本量来强化我们的研究结果。