Charité University Hospital, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), 10117 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany.
Charité University Hospital, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), 10117 Berlin, Germany.
Microvasc Res. 2018 Mar;116:34-44. doi: 10.1016/j.mvr.2017.09.004. Epub 2017 Oct 6.
Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF.
缺氧诱导的血管生成是组织再生、炎症和肿瘤生长的一个显著特征,由缺氧诱导因子 (HIF)-1 和 -2 调节。HIFs 在缺氧诱导的血管生成和内皮细胞代谢转换中的不同功能尚不清楚,因此是本研究的目的。我们使用 shRNA 介导的 HIF-1 或 HIF-2 的氧敏感 α 亚单位或两者的组合减少,研究了 HIF-1 和 -2 在永生人微血管内皮细胞 (HMEC-1) 适应低氧条件 (1% O) 时在血管生成、细胞因子分泌、基因表达和 ATP/ADP 比方面的作用。HIF-1α 的减少降低了细胞能量、缺氧诱导的糖酵解基因表达和血管生成,而不改变促血管生成因子。HIF-2α 的减少降低了缺氧诱导的促血管生成因子,增强了抗血管生成因子,减弱了血管生成,而不改变糖酵解基因表达。与相应的对照相比,两种 HIF 的减少都降低了细胞存活率、糖酵解酶和促血管生成因子的基因表达。最后,我们确定巨噬细胞移动抑制因子 (MIF) 是由 HIF-1 和 HIF-2 冗余调节的,并且是缺氧驱动的血管生成过程中的必需因子。我们的结果表明 HIF-1 和 HIF-2 对缺氧诱导的血管生成有重大影响,表明 HIF-1 和 HIF-2 具有不同但也有重叠的功能。这些发现为通过特异性靶向 HIF-1 和 HIF-2 或其靶标 MIF 提供了新的治疗方法的可能性。