Cléry Justine, Guipponi Olivier, Odouard Soline, Pinède Serge, Wardak Claire, Ben Hamed Suliann
Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, 69675 Bron, France.
Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, 69675 Bron, France
J Neurosci. 2017 Nov 1;37(44):10656-10670. doi: 10.1523/JNEUROSCI.0610-17.2017. Epub 2017 Oct 9.
In the jungle, survival is highly correlated with the ability to detect and distinguish between an approaching predator and a putative prey. From an ecological perspective, a predator rapidly approaching its prey is a stronger cue for flight than a slowly moving predator. In the present study, we use functional magnetic resonance imaging in the nonhuman primate, to investigate the neural bases of the prediction of an impact to the body by a looming stimulus, i.e., the neural bases of the interaction between a dynamic visual stimulus approaching the body and its expected consequences onto an independent sensory modality, namely, touch. We identify a core cortical network of occipital, parietal, premotor, and prefrontal areas maximally activated by tactile stimulations presented at the predicted time and location of impact of the looming stimulus on the faces compared with the activations observed for spatially or temporally incongruent tactile and dynamic visual cues. These activations reflect both an active integration of visual and tactile information and of spatial and temporal prediction information. The identified cortical network coincides with a well described multisensory visuotactile convergence and integration network suggested to play a key role in the definition of peripersonal space. These observations are discussed in the context of multisensory integration and spatial, temporal prediction and Bayesian causal inference. Looming stimuli have a particular ecological relevance as they are expected to come into contact with the body, evoking touch or pain sensations and possibly triggering an approach or escape behavior depending on their identity. Here, we identify the nonhuman primate functional network that is maximally activated by tactile stimulations presented at the predicted time and location of impact of the looming stimulus. Our findings suggest that the integration of spatial and temporal predictive cues possibly rely on the same neural mechanisms that are involved in multisensory integration.
在丛林中,生存与检测并区分接近的捕食者和假定猎物的能力高度相关。从生态学角度来看,快速接近猎物的捕食者比缓慢移动的捕食者更能强烈提示需要逃跑。在本研究中,我们使用非人类灵长类动物的功能磁共振成像,来研究由逼近刺激对身体造成冲击的预测的神经基础,即动态视觉刺激接近身体与其对独立感觉模态(即触觉)的预期后果之间相互作用的神经基础。我们确定了一个由枕叶、顶叶、运动前区和前额叶区域组成的核心皮质网络,与在空间或时间上不一致的触觉和动态视觉线索所观察到的激活情况相比,当在逼近刺激对面部的预测撞击时间和位置呈现触觉刺激时,该网络被最大程度地激活。这些激活反映了视觉和触觉信息以及空间和时间预测信息的积极整合。所确定的皮质网络与一个描述详尽的多感觉视觉触觉汇聚和整合网络相吻合,该网络被认为在个人周边空间的定义中起关键作用。这些观察结果在多感觉整合、空间和时间预测以及贝叶斯因果推理的背景下进行了讨论。逼近刺激具有特殊的生态相关性,因为预计它们会与身体接触,引发触觉或疼痛感觉,并可能根据其身份触发接近或逃避行为。在这里,我们确定了在逼近刺激的预测撞击时间和位置呈现触觉刺激时被最大程度激活的非人类灵长类动物功能网络。我们的研究结果表明,空间和时间预测线索的整合可能依赖于与多感觉整合所涉及的相同神经机制。