Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany.
Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany.
Nat Microbiol. 2017 Dec;2(12):1676-1685. doi: 10.1038/s41564-017-0039-9. Epub 2017 Oct 9.
Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.
Xenorhabdus 和 Photorhabdus 物种专门投入大量资源来生产源自非核糖体肽合成酶 (NRPS) 或聚酮合酶 (PKS) 的特殊代谢物。这两种细菌都与线虫共生,随后进入昆虫致病阶段。到目前为止,这种三方关系的分子基础以及单个代谢物和代谢途径的确切作用还没有得到很好的理解。为了弥补这一差距,我们大大扩展了这些细菌比较基因组学研究的数据库。将单个基因组中编码的基因聚类到层次同源群中,可以揭示该进化枝中功能进化的高分辨率图景。它确定了一组基因-其中许多基因参与次生代谢产物的产生-这些基因可能是这些细菌生态位特异性的原因。Photorhabdus 和 Xenorhabdus 在 DNA 序列水平上非常相似,这表明它们具有密切的进化关系。然而,高分辨率质谱分析揭示了这两个分类单元中存在巨大的化学多样性。分子网络重建确定了大量以前未识别的代谢物类别,包括 xefoampeptides 和 tilivalline。在这里,我们以互补的方式应用基因组学和代谢组学方法来识别和阐明其他类别的天然产物。我们还强调了从 NRPS 和 PKS 中快速且同时鉴定潜在有趣生物活性产物的能力,从而增强了分子生物学技术对加速天然产物发现的贡献。