Suppr超能文献

智能健康中不完整纵向数据的MIFuzzy聚类

MIFuzzy Clustering for Incomplete Longitudinal Data in Smart Health.

作者信息

Fang Hua

机构信息

Department of Computer and Information Science, University of Massachusetts Dartmouth, Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01655.

出版信息

Smart Health (Amst). 2017 Jun;1-2:50-65. doi: 10.1016/j.smhl.2017.04.002. Epub 2017 Apr 27.

Abstract

Missing data are common in longitudinal observational and randomized controlled trials in smart health studies. Multiple-imputation based fuzzy clustering is an emerging non-parametric soft computing method, used for either semi-supervised or unsupervised learning. Multiple imputation (MI) has been widely-used in missing data analyses, but has not yet been scrutinized for unsupervised learning methods, although they are important for explaining the heterogeneity of treatment effects. Built upon our previous work on MIfuzzy clustering, this paper introduces the MIFuzzy concepts and performance, theoretically, empirically and numerically demonstrate how MI-based approach can reduce the uncertainty of clustering accuracy in comparison to non- and single-imputation based clustering approach. This paper advances our understanding of the utility and strength of MIFuzzy clustering approach to processing incomplete longitudinal behavioral intervention data.

摘要

在智能健康研究的纵向观察性试验和随机对照试验中,缺失数据很常见。基于多重填补的模糊聚类是一种新兴的非参数软计算方法,用于半监督学习或无监督学习。多重填补(MI)已广泛应用于缺失数据分析,但尚未针对无监督学习方法进行仔细研究,尽管这些方法对于解释治疗效果的异质性很重要。基于我们之前关于MI模糊聚类的工作,本文介绍了MI模糊的概念和性能,从理论、实证和数值方面证明了与基于非填补和单一填补的聚类方法相比,基于MI的方法如何能够降低聚类准确性的不确定性。本文加深了我们对MI模糊聚类方法处理不完整纵向行为干预数据的效用和优势的理解。

相似文献

1
MIFuzzy Clustering for Incomplete Longitudinal Data in Smart Health.
Smart Health (Amst). 2017 Jun;1-2:50-65. doi: 10.1016/j.smhl.2017.04.002. Epub 2017 Apr 27.
2
Multiple- vs Non- or Single-Imputation based Fuzzy Clustering for Incomplete Longitudinal Behavioral Intervention Data.
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2016 Jun;2016:219-228. doi: 10.1109/CHASE.2016.19. Epub 2016 Aug 18.
3
Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth.
J Med Syst. 2016 Jun;40(6):146. doi: 10.1007/s10916-016-0499-0. Epub 2016 Apr 28.
4
Topic modeling for systematic review of visual analytics in incomplete longitudinal behavioral trial data.
Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100142. Epub 2020 Nov 13.
5
eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.
Int Conf Comput Netw Commun. 2018 Mar;2018:912-916. doi: 10.1109/ICCNC.2018.8390419. Epub 2018 Jun 21.
6
Federated Fuzzy Clustering for Decentralized Incomplete Longitudinal Behavioral Data.
IEEE Internet Things J. 2024 Apr 15;11(8):14657-14670. doi: 10.1109/jiot.2023.3343719. Epub 2023 Dec 18.
7
A New MI-Based Visualization Aided Validation Index for Mining Big Longitudinal Web Trial Data.
IEEE Access. 2016;4:2272-2280. doi: 10.1109/ACCESS.2016.2569074. Epub 2016 May 16.
8
Towards clustering of incomplete microarray data without the use of imputation.
Bioinformatics. 2007 Jan 1;23(1):107-13. doi: 10.1093/bioinformatics/btl555. Epub 2006 Oct 31.
9
Attrition in longitudinal studies. How to deal with missing data.
J Clin Epidemiol. 2002 Apr;55(4):329-37. doi: 10.1016/s0895-4356(01)00476-0.
10
Incomplete clustering analysis via multiple imputation.
J Appl Stat. 2022 Apr 12;50(9):1962-1979. doi: 10.1080/02664763.2022.2060952. eCollection 2023.

引用本文的文献

1
Feature Interaction Detection in Big Data Through a New Choquet Integral based Deep Neural Network.
Proc IEEE Int Conf Big Data. 2024 Dec;2024:700-708. doi: 10.1109/bigdata62323.2024.10825719. Epub 2025 Jan 16.
2
Federated Fuzzy Clustering for Decentralized Incomplete Longitudinal Behavioral Data.
IEEE Internet Things J. 2024 Apr 15;11(8):14657-14670. doi: 10.1109/jiot.2023.3343719. Epub 2023 Dec 18.
3
Topic modeling for systematic review of visual analytics in incomplete longitudinal behavioral trial data.
Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100142. Epub 2020 Nov 13.
4
eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.
Int Conf Comput Netw Commun. 2018 Mar;2018:912-916. doi: 10.1109/ICCNC.2018.8390419. Epub 2018 Jun 21.
5
Acculturation, Depression, and Smoking Cessation: a trajectory pattern recognition approach.
Tob Induc Dis. 2017 Jul 24;15:33. doi: 10.1186/s12971-017-0135-x. eCollection 2017.

本文引用的文献

1
An Enhanced Visualization Method to Aid Behavioral Trajectory Pattern Recognition Infrastructure for Big Longitudinal Data.
IEEE Trans Big Data. 2018 Jun;4(2):289-298. doi: 10.1109/TBDATA.2017.2653815. Epub 2017 Jan 16.
2
Multiple- vs Non- or Single-Imputation based Fuzzy Clustering for Incomplete Longitudinal Behavioral Intervention Data.
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2016 Jun;2016:219-228. doi: 10.1109/CHASE.2016.19. Epub 2016 Aug 18.
3
A New MI-Based Visualization Aided Validation Index for Mining Big Longitudinal Web Trial Data.
IEEE Access. 2016;4:2272-2280. doi: 10.1109/ACCESS.2016.2569074. Epub 2016 May 16.
4
Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth.
J Med Syst. 2016 Jun;40(6):146. doi: 10.1007/s10916-016-0499-0. Epub 2016 Apr 28.
5
iMStrong: Deployment of a Biosensor System to Detect Cocaine Use.
J Med Syst. 2015 Dec;39(12):186. doi: 10.1007/s10916-015-0337-9. Epub 2015 Oct 21.
7
Gender Differences in the Fagerström Test for Nicotine Dependence in Korean Americans.
J Smok Cessat. 2012 Aug 1;7(1):1-6. doi: 10.1017/jsc.2012.5. Epub 2012 Jul 13.
8
Detecting graded exposure effects: a report on an East Boston pregnancy cohort.
Nicotine Tob Res. 2012 Sep;14(9):1115-20. doi: 10.1093/ntr/ntr272. Epub 2012 Jan 20.
9
A Review of Hot Deck Imputation for Survey Non-response.
Int Stat Rev. 2010 Apr;78(1):40-64. doi: 10.1111/j.1751-5823.2010.00103.x.
10
A CTSA agenda to advance methods for comparative effectiveness research.
Clin Transl Sci. 2011 Jun;4(3):188-98. doi: 10.1111/j.1752-8062.2011.00282.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验