Suppr超能文献

基于多重插补与非插补或单重插补的模糊聚类方法处理不完全纵向行为干预数据

Multiple- vs Non- or Single-Imputation based Fuzzy Clustering for Incomplete Longitudinal Behavioral Intervention Data.

作者信息

Zhang Zhaoyang, Fang Hua

机构信息

Division of Biostatistics and Health Services Research, Department of Quantitative Health Science, University of Massachusetts Medical School, Worcester, MA 01655.

出版信息

IEEE Int Conf Connect Health Appl Syst Eng Technol. 2016 Jun;2016:219-228. doi: 10.1109/CHASE.2016.19. Epub 2016 Aug 18.

Abstract

Disentangling patients' behavioral variations is a critical step for better understanding an intervention's effects on individual outcomes. Missing data commonly exist in longitudinal behavioral intervention studies. Multiple imputation (MI) has been well studied for missing data analyses in the statistical field, however, has not yet been scrutinized for clustering or unsupervised learning, which are important techniques for explaining the heterogeneity of treatment effects. Built upon previous work on MI fuzzy clustering, this paper theoretically, empirically and numerically demonstrate how MI-based approach can reduce the uncertainty of clustering accuracy in comparison to non-and single-imputation based clustering approach. This paper advances our understanding of the utility and strength of multiple-imputation (MI) based fuzzy clustering approach to processing incomplete longitudinal behavioral intervention data.

摘要

理清患者的行为变化是更好地理解干预对个体结果影响的关键一步。纵向行为干预研究中普遍存在缺失数据。多重填补(MI)在统计领域的缺失数据分析中已得到充分研究,然而,尚未针对聚类或无监督学习进行审查,而聚类和无监督学习是解释治疗效果异质性的重要技术。基于先前关于MI模糊聚类的工作,本文从理论、实证和数值方面证明了与基于非填补和单一填补的聚类方法相比,基于MI的方法如何能够降低聚类准确性的不确定性。本文增进了我们对基于多重填补(MI)的模糊聚类方法在处理不完整纵向行为干预数据方面的效用和优势的理解。

相似文献

2
MIFuzzy Clustering for Incomplete Longitudinal Data in Smart Health.智能健康中不完整纵向数据的MIFuzzy聚类
Smart Health (Amst). 2017 Jun;1-2:50-65. doi: 10.1016/j.smhl.2017.04.002. Epub 2017 Apr 27.
4
Federated Fuzzy Clustering for Decentralized Incomplete Longitudinal Behavioral Data.用于分散式不完整纵向行为数据的联邦模糊聚类
IEEE Internet Things J. 2024 Apr 15;11(8):14657-14670. doi: 10.1109/jiot.2023.3343719. Epub 2023 Dec 18.
5
Towards clustering of incomplete microarray data without the use of imputation.迈向无需插补的不完整微阵列数据聚类
Bioinformatics. 2007 Jan 1;23(1):107-13. doi: 10.1093/bioinformatics/btl555. Epub 2006 Oct 31.
10
eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.eFCM:一种用于纵向干预数据的增强型模糊C均值算法
Int Conf Comput Netw Commun. 2018 Mar;2018:912-916. doi: 10.1109/ICCNC.2018.8390419. Epub 2018 Jun 21.

引用本文的文献

2
Federated Fuzzy Clustering for Decentralized Incomplete Longitudinal Behavioral Data.用于分散式不完整纵向行为数据的联邦模糊聚类
IEEE Internet Things J. 2024 Apr 15;11(8):14657-14670. doi: 10.1109/jiot.2023.3343719. Epub 2023 Dec 18.
4
eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.eFCM:一种用于纵向干预数据的增强型模糊C均值算法
Int Conf Comput Netw Commun. 2018 Mar;2018:912-916. doi: 10.1109/ICCNC.2018.8390419. Epub 2018 Jun 21.
6
MIFuzzy Clustering for Incomplete Longitudinal Data in Smart Health.智能健康中不完整纵向数据的MIFuzzy聚类
Smart Health (Amst). 2017 Jun;1-2:50-65. doi: 10.1016/j.smhl.2017.04.002. Epub 2017 Apr 27.

本文引用的文献

8
A Review of Hot Deck Imputation for Survey Non-response.调查无应答的热卡填充法综述
Int Stat Rev. 2010 Apr;78(1):40-64. doi: 10.1111/j.1751-5823.2010.00103.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验