Rumbut Joshua, Fang Hua, Wang Honggong
Department of Computer and Information Science, University of Massachusetts Dartmouth, North Dartmouth, MA, 02747, USA.
Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100142. Epub 2020 Nov 13.
Longitudinal observational and randomized controlled trials (RCT) are widely applied in biomedical behavioral studies and increasingly implemented in smart health systems. These trials frequently produce data that are high-dimensional, correlated, and contain missing values, posing significant analytic challenges. Notably, visual analytics are underdeveloped in this area. In this paper, we developed a longitudinal topic model to implement the systematic review of visual analytic methods presented at the IEEE VIS conference over its 28 year history, in comparison with MIFuzzy, an integrated and comprehensive soft computing tool for behavioral trajectory pattern recognition, validation, and visualization of incomplete longitudinal data. The findings of our longitudinal topic modeling highlight the trend patterns of visual analytics development in longitudinal behavioral trials and underscore the gigantic gap of existing robust visual analytic methods and actual working algorithms for longitudinal behavioral trial data. Future research areas for visual analytics in behavioral trial studies and smart health systems are discussed.
纵向观察性试验和随机对照试验(RCT)在生物医学行为研究中得到广泛应用,并越来越多地应用于智能健康系统。这些试验经常产生高维、相关且包含缺失值的数据,带来了重大的分析挑战。值得注意的是,该领域的视觉分析尚不完善。在本文中,我们开发了一种纵向主题模型,用于对IEEE VIS会议28年历史中展示的视觉分析方法进行系统综述,并与MIFuzzy进行比较,MIFuzzy是一种用于行为轨迹模式识别、验证和不完整纵向数据可视化的集成且全面的软计算工具。我们纵向主题建模的结果突出了纵向行为试验中视觉分析发展的趋势模式,并强调了现有强大的视觉分析方法与纵向行为试验数据实际工作算法之间的巨大差距。本文还讨论了行为试验研究和智能健康系统中视觉分析的未来研究领域。