Suppr超能文献

用于对不完整纵向行为试验数据中的视觉分析进行系统综述的主题建模

Topic modeling for systematic review of visual analytics in incomplete longitudinal behavioral trial data.

作者信息

Rumbut Joshua, Fang Hua, Wang Honggong

机构信息

Department of Computer and Information Science, University of Massachusetts Dartmouth, North Dartmouth, MA, 02747, USA.

Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA.

出版信息

Smart Health (Amst). 2020 Nov;18. doi: 10.1016/j.smhl.2020.100142. Epub 2020 Nov 13.

Abstract

Longitudinal observational and randomized controlled trials (RCT) are widely applied in biomedical behavioral studies and increasingly implemented in smart health systems. These trials frequently produce data that are high-dimensional, correlated, and contain missing values, posing significant analytic challenges. Notably, visual analytics are underdeveloped in this area. In this paper, we developed a longitudinal topic model to implement the systematic review of visual analytic methods presented at the IEEE VIS conference over its 28 year history, in comparison with MIFuzzy, an integrated and comprehensive soft computing tool for behavioral trajectory pattern recognition, validation, and visualization of incomplete longitudinal data. The findings of our longitudinal topic modeling highlight the trend patterns of visual analytics development in longitudinal behavioral trials and underscore the gigantic gap of existing robust visual analytic methods and actual working algorithms for longitudinal behavioral trial data. Future research areas for visual analytics in behavioral trial studies and smart health systems are discussed.

摘要

纵向观察性试验和随机对照试验(RCT)在生物医学行为研究中得到广泛应用,并越来越多地应用于智能健康系统。这些试验经常产生高维、相关且包含缺失值的数据,带来了重大的分析挑战。值得注意的是,该领域的视觉分析尚不完善。在本文中,我们开发了一种纵向主题模型,用于对IEEE VIS会议28年历史中展示的视觉分析方法进行系统综述,并与MIFuzzy进行比较,MIFuzzy是一种用于行为轨迹模式识别、验证和不完整纵向数据可视化的集成且全面的软计算工具。我们纵向主题建模的结果突出了纵向行为试验中视觉分析发展的趋势模式,并强调了现有强大的视觉分析方法与纵向行为试验数据实际工作算法之间的巨大差距。本文还讨论了行为试验研究和智能健康系统中视觉分析的未来研究领域。

相似文献

2
MIFuzzy Clustering for Incomplete Longitudinal Data in Smart Health.智能健康中不完整纵向数据的MIFuzzy聚类
Smart Health (Amst). 2017 Jun;1-2:50-65. doi: 10.1016/j.smhl.2017.04.002. Epub 2017 Apr 27.
4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
A survey of urban visual analytics: Advances and future directions.城市视觉分析综述:进展与未来方向
Comput Vis Media (Beijing). 2023;9(1):3-39. doi: 10.1007/s41095-022-0275-7. Epub 2022 Oct 18.

本文引用的文献

1
eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.eFCM:一种用于纵向干预数据的增强型模糊C均值算法
Int Conf Comput Netw Commun. 2018 Mar;2018:912-916. doi: 10.1109/ICCNC.2018.8390419. Epub 2018 Jun 21.
2
ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots.ScatterNet:用于散点图视觉分析的深度主观相似度模型。
IEEE Trans Vis Comput Graph. 2020 Mar;26(3):1562-1576. doi: 10.1109/TVCG.2018.2875702. Epub 2018 Oct 12.
3
Mapping Color to Meaning in Colormap Data Visualizations.在颜色映射数据可视化中为颜色赋予含义
IEEE Trans Vis Comput Graph. 2019 Jan;25(1):810-819. doi: 10.1109/TVCG.2018.2865147. Epub 2018 Sep 3.
4
Clustrophile 2: Guided Visual Clustering Analysis.聚类爱好者2:引导式可视化聚类分析
IEEE Trans Vis Comput Graph. 2018 Aug 20. doi: 10.1109/TVCG.2018.2864477.
7
MIFuzzy Clustering for Incomplete Longitudinal Data in Smart Health.智能健康中不完整纵向数据的MIFuzzy聚类
Smart Health (Amst). 2017 Jun;1-2:50-65. doi: 10.1016/j.smhl.2017.04.002. Epub 2017 Apr 27.
8
Clustervision: Visual Supervision of Unsupervised Clustering.聚类视觉监督:无监督聚类的视觉监督。
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):142-151. doi: 10.1109/TVCG.2017.2745085. Epub 2017 Aug 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验