Suppr超能文献

碳水化合物转运底物结合蛋白SP0092的生化与结构表征

Biochemical and Structural Characterization of the Carbohydrate Transport Substrate-binding-protein SP0092.

作者信息

Culurgioni Simone, Tang Minzhe, Hall David R, Walsh Martin A

机构信息

Diamond Light Source, Harwell Science & Innovation Campus; Research Complex at Harwell, Harwell Science & Innovation Campus;

Diamond Light Source, Harwell Science & Innovation Campus; Research Complex at Harwell, Harwell Science & Innovation Campus.

出版信息

J Vis Exp. 2017 Oct 2(128):56294. doi: 10.3791/56294.

Abstract

Development of new antimicrobials and vaccines for Streptococcus pneumoniae (pneumococcus) are necessary to halt the rapid rise in multiple resistant strains. Carbohydrate substrate binding proteins (SBPs) represent viable targets for the development of protein-based vaccines and new antimicrobials because of their extracellular localization and the centrality of carbohydrate import for pneumococcal metabolism, respectively. Described here is a rationalized integrated protocol to carry out a comprehensive characterization of SP0092, which can be extended to other carbohydrate SBPs from the pneumococcus and other bacteria. This procedure can aid the structure-based design of inhibitors for this class of proteins. Presented in the first part of this manuscript are protocols for biochemical analysis by thermal shift assay, multi angle light scattering (MALS), and size exclusion chromatography (SEC), which optimize the stability and homogeneity of the sample directed to crystallization trials and so enhance the probability of success. The second part of this procedure describes the characterization of the SBP crystals using a tunable wavelength anomalous diffraction synchrotron beamline, and data collection protocols for measuring data that can be used to resolve the crystallized protein structure.

摘要

开发针对肺炎链球菌(肺炎球菌)的新型抗菌药物和疫苗对于遏制多重耐药菌株的迅速增加至关重要。碳水化合物底物结合蛋白(SBP)分别因其细胞外定位以及碳水化合物导入对肺炎球菌代谢的核心作用,成为基于蛋白质的疫苗和新型抗菌药物开发的可行靶点。本文描述了一种合理的综合方案,用于对SP0092进行全面表征,该方案可扩展至肺炎球菌和其他细菌的其他碳水化合物SBP。此程序有助于基于结构设计此类蛋白质的抑制剂。本手稿第一部分介绍了通过热迁移分析、多角度光散射(MALS)和尺寸排阻色谱(SEC)进行生化分析的方案,这些方案优化了用于结晶试验的样品的稳定性和均一性,从而提高成功的概率。此程序的第二部分描述了使用可调波长反常衍射同步加速器光束线对SBP晶体进行表征,以及用于测量可用于解析结晶蛋白质结构的数据的数据收集方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88de/5752355/428678755676/jove-128-56294-0.jpg

相似文献

2
Structural characterization of the Streptococcus pneumoniae carbohydrate substrate-binding protein SP0092.
Acta Crystallogr F Struct Biol Commun. 2017 Jan 1;73(Pt 1):54-61. doi: 10.1107/S2053230X16020252.
3
Structural Basis for Regulation and Specificity of Fructooligosaccharide Import in Streptococcus pneumoniae.
Structure. 2017 Jan 3;25(1):79-93. doi: 10.1016/j.str.2016.11.008. Epub 2016 Dec 8.
5
Structural modulation of a periplasmic sugar-binding protein probes into its evolutionary ancestry.
J Struct Biol. 2018 Dec;204(3):498-506. doi: 10.1016/j.jsb.2018.09.006. Epub 2018 Sep 20.
6
1.2 Angstroms crystal structure of the S. pneumoniae PhtA histidine triad domain a novel zinc binding fold.
FEBS Lett. 2005 Oct 10;579(24):5353-60. doi: 10.1016/j.febslet.2005.08.066.
7
The conformation and function of a multimodular glycogen-degrading pneumococcal virulence factor.
Structure. 2011 May 11;19(5):640-51. doi: 10.1016/j.str.2011.03.001.
8
Structural characterization of the PTS IIA and IIB proteins associated with pneumococcal fucose utilization.
Proteins. 2017 May;85(5):963-968. doi: 10.1002/prot.25264. Epub 2017 Mar 24.
9
Crystallization and preliminary crystallographic studies of the D59A mutant of MicA, a YycF response-regulator homologue from Streptococcus pneumoniae.
Acta Crystallogr D Biol Crystallogr. 2004 May;60(Pt 5):950-1. doi: 10.1107/S0907444904005712. Epub 2004 Apr 21.
10
Expression, purification and X-ray characterization of residues 18-230 from the pneumococcal histidine triad protein A (PhtA) from Streptococcus pneumoniae.
Acta Crystallogr D Biol Crystallogr. 2004 May;60(Pt 5):926-8. doi: 10.1107/S0907444904004573. Epub 2004 Apr 21.

本文引用的文献

1
Structural characterization of the Streptococcus pneumoniae carbohydrate substrate-binding protein SP0092.
Acta Crystallogr F Struct Biol Commun. 2017 Jan 1;73(Pt 1):54-61. doi: 10.1107/S2053230X16020252.
2
Structural Basis for Regulation and Specificity of Fructooligosaccharide Import in Streptococcus pneumoniae.
Structure. 2017 Jan 3;25(1):79-93. doi: 10.1016/j.str.2016.11.008. Epub 2016 Dec 8.
3
Protein crystallization screens developed at the MRC Laboratory of Molecular Biology.
Drug Discov Today. 2016 May;21(5):819-25. doi: 10.1016/j.drudis.2016.03.008. Epub 2016 Mar 24.
4
Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal.
Acta Crystallogr D Struct Biol. 2016 Mar;72(Pt 3):359-74. doi: 10.1107/S2059798315019403. Epub 2016 Mar 1.
5
Advanced Crystallographic Data Collection Protocols for Experimental Phasing.
Methods Mol Biol. 2016;1320:175-91. doi: 10.1007/978-1-4939-2763-0_11.
6
Macromolecular ab initio phasing enforcing secondary and tertiary structure.
IUCrJ. 2015 Jan 1;2(Pt 1):95-105. doi: 10.1107/S2052252514024117.
8
Automatic protein structure solution from weak X-ray data.
Nat Commun. 2013;4:2777. doi: 10.1038/ncomms3777.
9
Molecular replacement then and now.
Acta Crystallogr D Biol Crystallogr. 2013 Nov;69(Pt 11):2266-75. doi: 10.1107/S0907444913011426. Epub 2013 Oct 18.
10
Optimization of protein purification and characterization using Thermofluor screens.
Protein Expr Purif. 2013 Oct;91(2):192-206. doi: 10.1016/j.pep.2013.08.002. Epub 2013 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验