Department of Physiology, Maastricht University, Universiteitssingel 50, ER Maastricht, The Netherlands.
Department of Cardiology, Maastricht University Medical Center, AZ Maastricht, The Netherlands.
Europace. 2018 Jul 1;20(7):e96-e104. doi: 10.1093/europace/eux234.
Non-invasive characterization of atrial fibrillation (AF) substrate complexity based on the electrocardiogram (ECG) may improve outcome prediction in patients receiving rhythm control therapies for AF. Multiple parameters to assess AF complexity and predict treatment outcome have been suggested. A comparative study of the predictive performance of complexity parameters on response to therapy and progression of AF in a large patient population is needed to standardize non-invasive analysis of AF.
A large variety of ECG complexity parameters were systematically compared in patients with recent onset AF undergoing pharmacological cardioversion (PCV) with flecainide. Parameters were computed on 10-s 12-lead ECGs of 221 patients before drug administration. The ability of ECG parameters to predict successful PCV and progression to persistent AF (mean follow-up 49 months) was evaluated and compared with common clinical predictors. Optimal prediction performance of successful PCV using only one ECG parameter was low, using dominant atrial frequency [lead II, receiver operating area under curve (AUC) 0.66, 95% confidence interval [0.64-0.67]], but the optimal combination of several ECG parameters strongly improved predictive performance (AUC 0.78 [0.76-0.79]). While predictive value of the optimal combination of clinical predictors was low (AUC 0.68 [0.66-0.70], using right atrial volume and weight), adding ECG parameters strongly increased performance (AUC 0.81 [0.79-0.82], P < 0.001). Interestingly, higher dominant frequency and higher f-wave amplitude were associated with increased risk of progression to persistent AF during follow-up.
Assessment of AF complexity from 12-lead ECGs significantly improves prediction of successful PCV and progression to persistent AF compared with common clinical and echocardiographic predictors.
基于心电图(ECG)对心房颤动(AF)基质复杂性进行非侵入性特征分析,可能会改善接受节律控制治疗的 AF 患者的预后。已经提出了多种评估 AF 复杂性和预测治疗结果的参数。需要对大量患者人群中治疗反应和 AF 进展的复杂性参数预测性能进行比较研究,以标准化 AF 的非侵入性分析。
系统比较了 221 例接受氟卡尼药物复律的新发 AF 患者的多种 ECG 复杂性参数。在给药前对患者的 10 秒 12 导联 ECG 计算参数。评估并比较了 ECG 参数预测药物复律成功和持续性 AF 进展的能力,与常见临床预测因素进行比较。使用单个 ECG 参数预测药物复律成功的最佳预测性能较低,使用主导心房频率[导联 II,接收者操作曲线下面积(AUC)为 0.66,95%置信区间为 0.64-0.67],但几个 ECG 参数的最佳组合可显著提高预测性能(AUC 为 0.78 [0.76-0.79])。虽然最佳临床预测因素组合的预测值较低(AUC 为 0.68 [0.66-0.70],使用右心房容积和重量),但添加 ECG 参数可显著提高性能(AUC 为 0.81 [0.79-0.82],P < 0.001)。有趣的是,在随访期间,较高的主导频率和较高的 f 波振幅与持续性 AF 进展的风险增加相关。
与常见的临床和超声心动图预测因素相比,从 12 导联 ECG 评估 AF 复杂性可显著提高药物复律成功和持续性 AF 进展的预测能力。