Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
Wadsworth Center, New York State Department of Health, Albany, New York, USA.
mBio. 2017 Oct 10;8(5):e01526-17. doi: 10.1128/mBio.01526-17.
Nearly all virulence factors in are activated by a master two-component system, BvgAS, composed of the sensor kinase BvgS and the response regulator BvgA. When BvgS is active, BvgA is phosphorylated (BvgAP), and virulence-activated genes (s) are expressed [Bvg(+) mode]. When BvgS is inactive and BvgA is not phosphorylated, virulence-repressed genes (s) are induced [Bvg(-) mode]. Here, we have used transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR) to define the BvgAS-dependent regulon of Tohama I. Our analyses reveal more than 550 BvgA-regulated genes, of which 353 are newly identified. BvgA-activated genes include those encoding two-component systems (such as ), multiple other transcriptional regulators, and the extracytoplasmic function (ECF) sigma factor , which is needed for type 3 secretion system (T3SS) expression, further establishing the importance of BvgAP as an apex regulator of transcriptional networks promoting virulence. Using transcription, we demonstrate that the promoter for is directly activated by BvgAP. BvgA-FeBABE cleavage reactions identify BvgAP binding sites centered at positions -41.5 and -63.5 in Most importantly, we show for the first time that genes for multiple and varied metabolic pathways are significantly upregulated in the Bvg(-) mode. These include genes for fatty acid and lipid metabolism, sugar and amino acid transporters, pyruvate dehydrogenase, phenylacetic acid degradation, and the glycolate/glyoxylate utilization pathway. Our results suggest that metabolic changes in the Bvg(-) mode may be participating in bacterial survival, transmission, and/or persistence and identify over 200 new s that can be tested for function. Within the past 20 years, outbreaks of whooping cough, caused by , have led to respiratory disease and infant mortalities, despite good vaccination coverage. This is due, at least in part, to the introduction of a less effective acellular vaccine in the 1990s. It is crucial, then, to understand the molecular basis of growth and infection. The two-component system BvgA (response regulator)/BvgS (histidine kinase) is the master regulator of virulence genes. We report here the first RNA-seq analysis of the BvgAS regulon in , revealing that more than 550 genes are regulated by BvgAS. We show that genes for multiple and varied metabolic pathways are highly regulated in the Bvg(-) mode (absence of BvgA phosphorylation). Our results suggest that metabolic changes in the Bvg(-) mode may be participating in bacterial survival, transmission, and/or persistence.
几乎所有的 毒力因子都被一个主两组件系统 BvgAS 激活,该系统由传感器激酶 BvgS 和反应调节剂 BvgA 组成。当 BvgS 活跃时,BvgA 被磷酸化(BvgAP),并且毒力激活基因(s)被表达[Bvg(+)模式]。当 BvgS 不活跃且 BvgA 未被磷酸化时,诱导毒力抑制基因(s)[Bvg(-)模式]。在这里,我们使用转录组测序(RNA-seq)和反转录定量 PCR(RT-qPCR)来定义 Tohama I 的 BvgAS 依赖性调控组。我们的分析揭示了超过 550 个 BvgA 调节的基因,其中 353 个是新发现的。BvgA 激活的基因包括双组分系统(如)、多个其他转录调节剂和细胞外功能(ECF)σ因子 ,该因子对于 III 型分泌系统(T3SS)的表达是必需的,这进一步确立了 BvgAP 作为促进毒力的转录网络顶点调节剂的重要性。使用 转录,我们证明了 的启动子直接被 BvgAP 激活。BvgA-FeBABE 切割反应鉴定出 BvgAP 结合位点位于 位置-41.5 和-63.5 之间。最重要的是,我们首次表明,多种代谢途径的基因在 Bvg(-)模式下显著上调。这些基因包括脂肪酸和脂质代谢、糖和氨基酸转运蛋白、丙酮酸脱氢酶、苯乙酸降解和乙醛酸/甘油酸利用途径。我们的结果表明,Bvg(-)模式下的代谢变化可能参与细菌的存活、传播和/或持续存在,并鉴定出 200 多个新的 s 可以进行功能测试。在过去的 20 年中,由于 引起的百日咳爆发导致呼吸道疾病和婴儿死亡,尽管疫苗接种覆盖率良好。这至少部分归因于 20 世纪 90 年代引入了一种效果较差的无细胞疫苗。因此,了解 的生长和感染的分子基础至关重要。双组分系统 BvgA(反应调节剂)/BvgS(组氨酸激酶)是 毒力基因的主要调节因子。我们在这里报告了 BvgAS 在 中的调控组的首次 RNA-seq 分析,揭示了超过 550 个基因受 BvgAS 调控。我们表明,多种代谢途径的基因在 Bvg(-)模式(缺乏 BvgA 磷酸化)下高度调控。我们的结果表明,Bvg(-)模式下的代谢变化可能参与了细菌的存活、传播和/或持续存在。