Suppr超能文献

用于对生物体振荡状态进行分类的机器学习方法。

Machine learning method for the classification of the state of living organisms' oscillations.

作者信息

Kweku David, Villalba Maria I, Willaert Ronnie G, Yantorno Osvaldo M, Vela Maria E, Panorska Anna K, Kasas Sandor

机构信息

Department of Mathematics and Statistics, University of Nevada Reno, Reno, NV, United States.

Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne, Lausanne, Switzerland.

出版信息

Front Bioeng Biotechnol. 2024 Mar 7;12:1348106. doi: 10.3389/fbioe.2024.1348106. eCollection 2024.

Abstract

The World Health Organization highlights the urgent need to address the global threat posed by antibiotic-resistant bacteria. Efficient and rapid detection of bacterial response to antibiotics and their virulence state is crucial for the effective treatment of bacterial infections. However, current methods for investigating bacterial antibiotic response and metabolic state are time-consuming and lack accuracy. To address these limitations, we propose a novel method for classifying bacterial virulence based on statistical analysis of nanomotion recordings. We demonstrated the method by classifying living bacteria in the virulent or avirulence phase, and dead bacteria, based on their cellular nanomotion signal. Our method offers significant advantages over current approaches, as it is faster and more accurate. Additionally, its versatility allows for the analysis of cellular nanomotion in various applications beyond bacterial virulence classification.

摘要

世界卫生组织强调迫切需要应对抗生素耐药细菌所构成的全球威胁。高效快速地检测细菌对抗生素的反应及其毒力状态对于有效治疗细菌感染至关重要。然而,目前用于研究细菌抗生素反应和代谢状态的方法既耗时又缺乏准确性。为了克服这些局限性,我们提出了一种基于纳米运动记录的统计分析来对细菌毒力进行分类的新方法。我们通过根据活细菌的细胞纳米运动信号对处于有毒或无毒阶段的活细菌以及死细菌进行分类,展示了该方法。我们的方法相对于目前的方法具有显著优势,因为它更快且更准确。此外,其通用性使得它能够在细菌毒力分类之外的各种应用中分析细胞纳米运动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验