Suppr超能文献

通过全球抗疟耐药性网络平台共享个体患者和寄生虫水平的数据:一项定性案例研究。

Sharing individual patient and parasite-level data through the WorldWide Antimalarial Resistance Network platform: A qualitative case study.

作者信息

Pisani Elizabeth, Botchway Stella

机构信息

Visiting Senior Research Fellow, The Policy Institute, King's College London, London, UK.

Independent research analyst, Oxford, UK.

出版信息

Wellcome Open Res. 2017 Aug 16;2:63. doi: 10.12688/wellcomeopenres.12259.1. eCollection 2017.

Abstract

BACKGROUND

Increasingly, biomedical researchers are encouraged or required by research funders and journals to share their data, but there's very little guidance on how to do that equitably and usefully, especially in resource-constrained settings. We performed an in-depth case study of one data sharing pioneer: the WorldWide Antimalarial Resistance Network (WWARN).

METHODS

The case study included a records review, a quantitative analysis of WAARN-related publications, in-depth interviews with 47 people familiar with WWARN, and a witness seminar involving a sub-set of 11 interviewees.

RESULTS

WWARN originally aimed to collate clinical, in vitro, pharmacological and molecular data into linked, open-access databases intended to serve as a public resource to guide antimalarial drug treatment policies. Our study describes how WWARN navigated challenging institutional and academic incentive structures, alongside funders' reluctance to invest in capacity building in malaria-endemic countries, which impeded data sharing. The network increased data contributions by focusing on providing free, online tools to improve the quality and efficiency of data collection, and by inviting collaborative authorship on papers addressing policy-relevant questions that could only be answered through pooled analyses. By July 1, 2016, the database included standardised data from 103 molecular studies and 186 clinical trials, representing 135,000 individual patients. Developing the database took longer and cost more than anticipated, and efforts to increase equity for data contributors are on-going. However, analyses of the pooled data have generated new methods and influenced malaria treatment recommendations globally. Despite not achieving the initial goal of real-time surveillance, WWARN has developed strong data governance and curation tools, which are now being adapted relatively quickly for other diseases.

CONCLUSIONS

To be useful, data sharing requires investment in long-term infrastructure. To be feasible, it requires new incentive structures that favour the generation of reusable knowledge.

摘要

背景

生物医学研究人员越来越受到研究资助者和期刊的鼓励或要求来共享他们的数据,但对于如何公平且有效地做到这一点,尤其是在资源有限的环境中,几乎没有什么指导。我们对一个数据共享先驱——全球抗疟药物抗性网络(WWARN)进行了深入的案例研究。

方法

该案例研究包括记录审查、对与WWARN相关的出版物进行定量分析、对47位熟悉WWARN的人员进行深入访谈,以及一次有11位受访者参与的见证研讨会。

结果

WWARN最初旨在将临床、体外、药理学和分子数据整理到相互关联的开放获取数据库中,作为指导抗疟药物治疗政策的公共资源。我们的研究描述了WWARN如何应对具有挑战性的机构和学术激励结构,以及资助者不愿投资于疟疾流行国家的能力建设,这阻碍了数据共享。该网络通过专注于提供免费的在线工具来提高数据收集的质量和效率,以及通过邀请共同撰写关于政策相关问题的论文(这些问题只能通过汇总分析来回答)来增加数据贡献。到2016年7月1日,该数据库包含来自103项分子研究和186项临床试验的标准化数据,代表135,000名个体患者。开发该数据库花费的时间比预期更长,成本也更高,并且为数据贡献者增加公平性的努力仍在进行中。然而,对汇总数据的分析产生了新方法,并影响了全球的疟疾治疗建议。尽管未实现实时监测的最初目标,但WWARN已开发出强大的数据治理和管理工具,这些工具现在正相对迅速地应用于其他疾病。

结论

要使数据共享有用,需要对长期基础设施进行投资。要使其可行,需要新的激励结构来促进可重复使用知识的产生。

相似文献

1
2
Strength in Numbers: The WWARN Case Study of Purpose-Driven Data Sharing.
Am J Trop Med Hyg. 2019 Jan;100(1):13-15. doi: 10.4269/ajtmh.18-0649.
4
The project data sphere initiative: accelerating cancer research by sharing data.
Oncologist. 2015 May;20(5):464-e20. doi: 10.1634/theoncologist.2014-0431. Epub 2015 Apr 15.
5
German funders' data sharing policies-A qualitative interview study.
PLoS One. 2024 Feb 8;19(2):e0296956. doi: 10.1371/journal.pone.0296956. eCollection 2024.
7
The rationale and plan for creating a World Antimalarial Resistance Network (WARN).
Malar J. 2007 Sep 6;6:118. doi: 10.1186/1475-2875-6-118.
8
World Antimalarial Resistance Network I: clinical efficacy of antimalarial drugs.
Malar J. 2007 Sep 6;6:119. doi: 10.1186/1475-2875-6-119.
10
Building a Governance Strategy for CER: The Patient Outcomes Research to Advance Learning (PORTAL) Network Experience.
EGEMS (Wash DC). 2016 Mar 28;4(2):1216. doi: 10.13063/2327-9214.1216. eCollection 2016.

本文引用的文献

1
Data Sharing - Is the Juice Worth the Squeeze?
N Engl J Med. 2016 Oct 27;375(17):1608-1609. doi: 10.1056/NEJMp1610336.
2
The Importance - and the Complexities - of Data Sharing.
N Engl J Med. 2016 Sep 22;375(12):1182-3. doi: 10.1056/NEJMe1611027.
3
Offline: Data sharing-why editors may have got it wrong.
Lancet. 2016 Sep 17;388(10050):1143. doi: 10.1016/S0140-6736(16)31638-5. Epub 2016 Sep 16.
4
Toward Fairness in Data Sharing.
N Engl J Med. 2016 Aug 4;375(5):405-7. doi: 10.1056/NEJMp1605654.
5
Which health research gets used and why? An empirical analysis of 30 cases.
Health Res Policy Syst. 2016 May 17;14(1):36. doi: 10.1186/s12961-016-0107-2.
6
Avoiding Data Dumpsters--Toward Equitable and Useful Data Sharing.
N Engl J Med. 2016 Jun 23;374(25):2414-5. doi: 10.1056/NEJMp1605148. Epub 2016 May 11.
7
From Patient to Patient--Sharing the Data from Clinical Trials.
N Engl J Med. 2016 Jun 23;374(25):2409-11. doi: 10.1056/NEJMp1605378. Epub 2016 May 11.
8
Use of Open Access Platforms for Clinical Trial Data.
JAMA. 2016;315(12):1283-4. doi: 10.1001/jama.2016.2374.
9
Data Resource Profile: Network for Analysing Longitudinal Population-based HIV/AIDS data on Africa (ALPHA Network).
Int J Epidemiol. 2016 Feb;45(1):83-93. doi: 10.1093/ije/dyv343. Epub 2016 Mar 10.
10
Data Sharing and the Journal.
N Engl J Med. 2016 May 12;374(19):e24. doi: 10.1056/NEJMe1601087. Epub 2016 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验