Li Jingyao, Lin Dongdong, Wang Yu-Ping
Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States.
Tulane University, Department of Global Biostatistics and Data Sciences, New Orleans, Louisiana, United States.
J Med Imaging (Bellingham). 2017 Oct;4(4):044001. doi: 10.1117/1.JMI.4.4.044001. Epub 2017 Oct 10.
Multicolor fluorescence hybridization (M-FISH) is a multichannel imaging technique for rapid detection of chromosomal abnormalities. It is a critical and challenging step to segment chromosomes from M-FISH images toward better chromosome classification. Recently, several fuzzy C-means (FCM) clustering-based methods have been proposed for M-FISH image segmentation or classification, e.g., adaptive fuzzy C-means (AFCM) and improved AFCM (IAFCM), but most of these methods used only one channel imaging information with limited accuracy. To improve the segmentation for better accuracy and more robustness, we proposed an FCM clustering-based method, denoted by spatial- and spectral-FCM. Our method has the following advantages: (1) it is able to exploit information from neighboring pixels (spatial information) to reduce the noise and (2) it can incorporate pixel information across different channels simultaneously (spectral information) into the model. We evaluated the performance of our method by comparing with other FCM-based methods in terms of both accuracy and false-positive detection rate on synthetic, hybrid, and real images. The comparisons on 36 M-FISH images have shown that our proposed method results in higher segmentation accuracy ([Formula: see text]) and a lower false-positive ratio ([Formula: see text]) than conventional FCM (accuracy: [Formula: see text], and false-positive ratio: [Formula: see text]) and the IAFCM (accuracy: [Formula: see text] and false-positive ratio: [Formula: see text]) methods by incorporating both spatial and spectral information from M-FISH images.
多色荧光杂交(M-FISH)是一种用于快速检测染色体异常的多通道成像技术。从M-FISH图像中分割染色体以实现更好的染色体分类是一个关键且具有挑战性的步骤。最近,已经提出了几种基于模糊C均值(FCM)聚类的方法用于M-FISH图像分割或分类,例如自适应模糊C均值(AFCM)和改进型AFCM(IAFCM),但这些方法大多仅使用单通道成像信息,准确性有限。为了提高分割的准确性和鲁棒性,我们提出了一种基于FCM聚类的方法,称为空间和光谱FCM。我们的方法具有以下优点:(1)能够利用相邻像素的信息(空间信息)来减少噪声,(2)可以将跨不同通道的像素信息(光谱信息)同时纳入模型。我们通过在合成图像、混合图像和真实图像上与其他基于FCM的方法在准确性和误报检测率方面进行比较,评估了我们方法的性能。对36幅M-FISH图像的比较表明,我们提出 的方法通过结合M-FISH图像的空间和光谱信息,比传统FCM(准确性:[公式:见原文];误报率:[公式:见原文])和IAFCM(准确性:[公式:见原文];误报率:[公式:见原文])方法具有更高 的分割准确性([公式:见原文])和更低的误报率([公式:见原文])。