Suppr超能文献

通过结合空间和光谱信息,使用改进的模糊C均值聚类算法对多色荧光杂交图像进行分割。

Segmentation of multicolor fluorescence hybridization images using an improved fuzzy C-means clustering algorithm by incorporating both spatial and spectral information.

作者信息

Li Jingyao, Lin Dongdong, Wang Yu-Ping

机构信息

Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States.

Tulane University, Department of Global Biostatistics and Data Sciences, New Orleans, Louisiana, United States.

出版信息

J Med Imaging (Bellingham). 2017 Oct;4(4):044001. doi: 10.1117/1.JMI.4.4.044001. Epub 2017 Oct 10.

Abstract

Multicolor fluorescence hybridization (M-FISH) is a multichannel imaging technique for rapid detection of chromosomal abnormalities. It is a critical and challenging step to segment chromosomes from M-FISH images toward better chromosome classification. Recently, several fuzzy C-means (FCM) clustering-based methods have been proposed for M-FISH image segmentation or classification, e.g., adaptive fuzzy C-means (AFCM) and improved AFCM (IAFCM), but most of these methods used only one channel imaging information with limited accuracy. To improve the segmentation for better accuracy and more robustness, we proposed an FCM clustering-based method, denoted by spatial- and spectral-FCM. Our method has the following advantages: (1) it is able to exploit information from neighboring pixels (spatial information) to reduce the noise and (2) it can incorporate pixel information across different channels simultaneously (spectral information) into the model. We evaluated the performance of our method by comparing with other FCM-based methods in terms of both accuracy and false-positive detection rate on synthetic, hybrid, and real images. The comparisons on 36 M-FISH images have shown that our proposed method results in higher segmentation accuracy ([Formula: see text]) and a lower false-positive ratio ([Formula: see text]) than conventional FCM (accuracy: [Formula: see text], and false-positive ratio: [Formula: see text]) and the IAFCM (accuracy: [Formula: see text] and false-positive ratio: [Formula: see text]) methods by incorporating both spatial and spectral information from M-FISH images.

摘要

多色荧光杂交(M-FISH)是一种用于快速检测染色体异常的多通道成像技术。从M-FISH图像中分割染色体以实现更好的染色体分类是一个关键且具有挑战性的步骤。最近,已经提出了几种基于模糊C均值(FCM)聚类的方法用于M-FISH图像分割或分类,例如自适应模糊C均值(AFCM)和改进型AFCM(IAFCM),但这些方法大多仅使用单通道成像信息,准确性有限。为了提高分割的准确性和鲁棒性,我们提出了一种基于FCM聚类的方法,称为空间和光谱FCM。我们的方法具有以下优点:(1)能够利用相邻像素的信息(空间信息)来减少噪声,(2)可以将跨不同通道的像素信息(光谱信息)同时纳入模型。我们通过在合成图像、混合图像和真实图像上与其他基于FCM的方法在准确性和误报检测率方面进行比较,评估了我们方法的性能。对36幅M-FISH图像的比较表明,我们提出 的方法通过结合M-FISH图像的空间和光谱信息,比传统FCM(准确性:[公式:见原文];误报率:[公式:见原文])和IAFCM(准确性:[公式:见原文];误报率:[公式:见原文])方法具有更高 的分割准确性([公式:见原文])和更低的误报率([公式:见原文])。

相似文献

2
A patch-based tensor decomposition algorithm for M-FISH image classification.
Cytometry A. 2017 Jun;91(6):622-632. doi: 10.1002/cyto.a.22864. Epub 2016 May 3.
4
Classification of multicolor fluorescence in situ hybridization (M-FISH) images with sparse representation.
IEEE Trans Nanobioscience. 2012 Jun;11(2):111-8. doi: 10.1109/TNB.2012.2189414.
5
Brain tissue segmentation using fuzzy clustering techniques.
Technol Health Care. 2015;23(5):571-80. doi: 10.3233/THC-151012.
6
8
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
10
A Novel Brain MRI Image Segmentation Method Using an Improved Multi-View Fuzzy -Means Clustering Algorithm.
Front Neurosci. 2021 Mar 25;15:662674. doi: 10.3389/fnins.2021.662674. eCollection 2021.

本文引用的文献

2
A modified fuzzy C-means method for segmenting MR images using non-local information.
Technol Health Care. 2016 Apr 29;24 Suppl 2:S785-93. doi: 10.3233/THC-161208.
3
A patch-based tensor decomposition algorithm for M-FISH image classification.
Cytometry A. 2017 Jun;91(6):622-632. doi: 10.1002/cyto.a.22864. Epub 2016 May 3.
5
Group sparse canonical correlation analysis for genomic data integration.
BMC Bioinformatics. 2013 Aug 12;14:245. doi: 10.1186/1471-2105-14-245.
6
Classification of multicolor fluorescence in situ hybridization (M-FISH) images with sparse representation.
IEEE Trans Nanobioscience. 2012 Jun;11(2):111-8. doi: 10.1109/TNB.2012.2189414.
7
A semisupervised segmentation model for collections of images.
IEEE Trans Image Process. 2012 Jun;21(6):2955-68. doi: 10.1109/TIP.2012.2187670. Epub 2012 Feb 13.
8
Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data.
J Exp Clin Cancer Res. 2009 Dec 10;28(1):149. doi: 10.1186/1756-9966-28-149.
9
Molecular genetic analysis of Down syndrome.
Hum Genet. 2009 Jul;126(1):195-214. doi: 10.1007/s00439-009-0696-8. Epub 2009 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验