Suppr超能文献

一种基于嵌入邻域信息约束的模糊聚类图像分割自适应特征选择算法

An Adaptive Feature Selection Algorithm for Fuzzy Clustering Image Segmentation Based on Embedded Neighbourhood Information Constraints.

作者信息

Ren Hang, Hu Taotao

机构信息

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

出版信息

Sensors (Basel). 2020 Jul 3;20(13):3722. doi: 10.3390/s20133722.

Abstract

This paper addresses the lack of robustness of feature selection algorithms for fuzzy clustering segmentation with the Gaussian mixture model. Assuming that the neighbourhood pixels and the centre pixels obey the same distribution, a Markov method is introduced to construct the prior probability distribution and achieve the membership degree regularisation constraint for clustering sample points. Then, a noise smoothing factor is introduced to optimise the prior probability constraint. Second, a power index is constructed by combining the classification membership degree and prior probability since the Kullback-Leibler (KL) divergence of the noise smoothing factor is used to supervise the prior probability; this probability is embedded into Fuzzy Superpixels Fuzzy C-means(FSFCM) as a regular factor. This paper proposes a fuzzy clustering image segmentation algorithm based on an adaptive feature selection Gaussian mixture model with neighbourhood information constraints. To verify the segmentation performance and anti-noise robustness of the improved algorithm, the fuzzy C-means clustering algorithm Fuzzy C-means (FCM), FSFCM, Spatially Variant Finite Mixture Model(SVFMM), EGFMM, extended Gaussian mixture model (EGMM), adaptive feature selection robust fuzzy clustering segmentation algorithm (AFSFCM), fast and robust spatially constrained Gaussian mixture model (GMM) for image segmentation (FRSCGMM), and improve method are used to segment grey images containing Gaussian noise, salt-and-pepper noise, multiplicative noise and mixed noise. The peak signal-to-noise ratio (PSNR) and the error rate (MCR) are used as the theoretical basis for assessing the segmentation results. The improved algorithm indicators proposed in this paper are optimised. The improved algorithm yields increases of 0.1272-12.9803 dB, 1.5501-13.4396 dB, 1.9113-11.2613 dB and 1.0233-10.2804 dB over the other methods, and the Misclassification rate(MSR) decreases by 0.32-37.32%, 5.02-41.05%, 0.3-21.79% and 0.9-30.95% compared to that with the other algorithms. It is verified that the segmentation results of the improved algorithm have good regional consistency and strong anti-noise robustness, and they meet the needs of noisy image segmentation.

摘要

本文探讨了高斯混合模型模糊聚类分割中特征选择算法缺乏鲁棒性的问题。假设邻域像素和中心像素服从相同分布,引入马尔可夫方法来构建先验概率分布,并实现聚类样本点的隶属度正则化约束。然后,引入噪声平滑因子来优化先验概率约束。其次,由于噪声平滑因子的库尔贝克-莱布勒(KL)散度用于监督先验概率,通过结合分类隶属度和先验概率构建一个幂指数;该概率作为正则因子嵌入到模糊超像素模糊C均值(FSFCM)中。本文提出了一种基于具有邻域信息约束的自适应特征选择高斯混合模型的模糊聚类图像分割算法。为了验证改进算法的分割性能和抗噪声鲁棒性,使用模糊C均值聚类算法(FCM)、FSFCM、空间可变有限混合模型(SVFMM)、EGFMM、扩展高斯混合模型(EGMM)、自适应特征选择鲁棒模糊聚类分割算法(AFSFCM)、用于图像分割的快速且鲁棒的空间约束高斯混合模型(GMM)(FRSCGMM)以及改进方法对包含高斯噪声、椒盐噪声、乘性噪声和混合噪声的灰度图像进行分割。峰值信噪比(PSNR)和错误率(MCR)用作评估分割结果的理论依据。本文提出的改进算法指标得到了优化。与其他方法相比,改进算法的指标提高了0.1272 - 12.9803 dB、1.5501 - 13.4396 dB、1.9113 - 11.2613 dB和1.0233 - 10.2804 dB,误分类率(MSR)与其他算法相比降低了0.32 - 37.32%、5.02 - 41.05%、0.3 - 21.79%和0.9 - 30.95%。验证了改进算法的分割结果具有良好的区域一致性和较强的抗噪声鲁棒性,满足了噪声图像分割的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6b0/7374377/a47b002fe568/sensors-20-03722-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验