Suppr超能文献

重新审视体内效力——保持目标在视线范围内。

In vivo potency revisited - Keep the target in sight.

机构信息

Department of Biomedical Sciences and Veterinary Public Health, Division of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.

Mathematical Institute, Leiden University, PB 9512, 2300, RA, Leiden, The Netherlands.

出版信息

Pharmacol Ther. 2018 Apr;184:177-188. doi: 10.1016/j.pharmthera.2017.10.011. Epub 2017 Oct 10.

Abstract

Potency is a central parameter in pharmacological and biochemical sciences, as well as in drug discovery and development endeavors. It is however typically defined in terms only of ligand to target binding affinity also in in vivo experimentation, thus in a manner analogous to in in vitro studies. As in vivo potency is in fact a conglomerate of events involving ligand, target, and target-ligand complex processes, overlooking some of the fundamental differences between in vivo and in vitro may result in serious mispredictions of in vivo efficacious dose and exposure. The analysis presented in this paper compares potency measures derived from three model situations. Model A represents the closed in vitro system, defining target binding of a ligand when total target and ligand concentrations remain static and constant. Model B describes an open in vivo system with ligand input and clearance (Cl), adding in parallel to the turnover (k, k) of the target. Model C further adds to the open in vivo system in Model B also the elimination of the target-ligand complex (k) via a first-order process. We formulate corresponding equations of the equilibrium (steady-state) relationships between target and ligand, and complex and ligand for each of the three model systems and graphically illustrate the resulting simulations. These equilibrium relationships demonstrate the relative impact of target and target-ligand complex turnover, and are easier to interpret than the more commonly used ligand-, target- and complex concentration-time courses. A new potency expression, labeled L, is then derived. L is the ligand concentration at half-maximal target and complex concentrations and is an amalgamation of target turnover, target-ligand binding and complex elimination parameters estimated from concentration-time data. L is then compared to the dissociation constant K (target-ligand binding affinity), the conventional Black & Leff potency estimate EC, and the derived Michaelis-Menten parameter K (target-ligand binding and complex removal) across a set of literature data. It is evident from a comparison between parameters derived from in vitro vs. in vivo experiments that L can be either numerically greater or smaller than the K (or K) parameter, primarily depending on the ratio of k-to-k. Contrasting the limit values of target R and target-ligand complex RL for ligand concentrations approaching infinity demonstrates that the outcome of the three models differs to a great extent. Based on the analysis we propose that a better understanding of in vivo pharmacological potency requires simultaneous assessment of the impact of its underlying determinants in the open system setting. We propose that L will be a useful parameter guiding predictions of the effective concentration range, for translational purposes, and assessment of in vivo target occupancy/suppression by ligand, since it also encompasses target turnover - in turn also subject to influence by pathophysiology and drug treatment. Different compounds may have similar binding affinity for a target in vitro (same K), but vastly different potencies in vivo. L points to what parameters need to be taken into account, and particularly that closed-system (in vitro) parameters should not be first choice when ranking compounds in vivo (open system).

摘要

效价是药理学和生物化学科学、药物发现和开发工作中的一个核心参数。然而,即使在体内实验中,它也仅仅是根据配体与靶标结合亲和力来定义的,因此与体外研究类似。由于体内效价实际上是涉及配体、靶标和靶标-配体复合物过程的一系列事件的总和,如果忽略了体内和体外之间的一些基本区别,可能会导致对体内有效剂量和暴露量的严重预测错误。本文介绍的分析比较了来自三种模型情况的效价测量值。模型 A 代表封闭的体外系统,定义了当总靶标和配体浓度保持静态和恒定时配体与靶标的结合。模型 B 描述了一个开放的体内系统,其中有配体输入和清除(Cl),同时与靶标的周转率(k,k)平行增加。模型 C 进一步在模型 B 的开放体内系统中添加了通过一级过程消除靶标-配体复合物(k)。我们为三个模型系统中的每个系统制定了相应的平衡(稳态)关系的目标和配体之间,以及复合物和配体之间的方程,并以图形方式说明了由此产生的模拟。这些平衡关系展示了靶标和靶标-配体复合物周转率的相对影响,并且比更常用的配体、靶标和复合物浓度-时间曲线更容易解释。然后得出一个新的效价表达,标记为 L。L 是靶标和复合物浓度达到半最大值时的配体浓度,是从浓度-时间数据中估计的靶标周转率、靶标-配体结合和复合物消除参数的混合体。然后将 L 与解离常数 K(靶标-配体结合亲和力)、传统的 Black & Leff 效价估计 EC 以及从文献数据中得出的米氏常数 K(靶标-配体结合和复合物去除)进行比较。从比较体内和体外实验得出的参数可以明显看出,L 可以大于或小于 K(或 K)参数,主要取决于 k 与 k 的比值。对比趋近于无穷大的配体浓度下目标 R 和目标-配体复合物 RL 的极限值表明,三个模型的结果有很大的不同。基于我们的分析,我们提出,要更好地理解体内药理学效价,需要同时评估开放系统环境中其潜在决定因素的影响。我们提出,L 将是一个有用的参数,用于指导翻译目的的有效浓度范围的预测,并评估配体对体内靶标占据/抑制的作用,因为它还包括靶标周转率——靶标周转率也可能受到病理生理学和药物治疗的影响。不同的化合物在体外可能对同一靶标具有相似的结合亲和力(相同的 K),但在体内的效价却大不相同。L 指出了需要考虑哪些参数,特别是在对体内化合物进行排序时,不应首先选择封闭系统(体外)参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验