Suppr超能文献

一种靶向降解的综合建模方法:从半机理或全机理模型和精确稳态解中获得关于优化、数据需求和 PKPD 预测的见解。

An integrated modelling approach for targeted degradation: insights on optimization, data requirements and PKPD predictions from semi- or fully-mechanistic models and exact steady state solutions.

机构信息

DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.

出版信息

J Pharmacokinet Pharmacodyn. 2023 Oct;50(5):327-349. doi: 10.1007/s10928-023-09857-9. Epub 2023 Apr 29.

Abstract

The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization strategy. Even convoluted exact steady state solutions for bivalent degraders provide insight on the type of observations required to ensure the predictive capacity of a mechanistic approach. Specifically for PROTACs, the structure of the exact steady state solution suggests that the total remaining target at steady state, which is easily accessible experimentally, is insufficient to reconstruct the state of the whole system at equilibrium and observations on different species (such as binary/ternary complexes) are necessary. Secondly, global sensitivity analysis of fully mechanistic models for PROTACs suggests that both target and ligase baselines (actually, their ratio) are the major sources of variability in the response of non-cooperative systems, which speaks to the importance of characterizing their distribution in the target patient population. Finally, we propose a pragmatic modelling approach which incorporates the insights generated with fully mechanistic models into simpler turnover models to improve their predictive ability, hence enabling acceleration of drug discovery programs and increased probability of success in the clinic.

摘要

本文提出了一种将传统周转率模型和全机械模型相结合的蛋白质降解剂综合数学建模方法的价值。首先,我们展示了单价和双价降解剂的机械模型的精确解如何提供每个系统参数在驱动药理反应中的作用的见解。我们展示了结合和解离速率以及降解速率与单价降解剂的效力和最大效应的关系,以及如何利用这种关系来提出化合物优化策略。即使是复杂的双价降解剂的精确稳态解也为确保机械方法的预测能力所需的观察类型提供了见解。具体对于 PROTACs,精确稳态解的结构表明,在稳态下剩余的总靶标,这在实验中很容易获得,不足以重建整个系统在平衡时的状态,并且需要对不同物种(如二元/三元复合物)进行观察。其次,PROTACs 的全机械模型的全局敏感性分析表明,靶标和连接酶基线(实际上是它们的比值)是非合作系统反应中变异性的主要来源,这说明了在目标患者群体中对其分布进行特征描述的重要性。最后,我们提出了一种实用的建模方法,将全机械模型生成的见解纳入更简单的周转率模型中,以提高其预测能力,从而加速药物发现计划并增加在临床上取得成功的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45dc/10460745/25c5b8cec96c/10928_2023_9857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验