Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany.
Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
Redox Biol. 2018 Apr;14:328-337. doi: 10.1016/j.redox.2017.08.020. Epub 2017 Sep 8.
Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC) in the vasculature and in platelets. Red blood cells (RBCs) are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE)-5 and protein kinase G (PKG) in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD). Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active αβ-sGC (isoform 1), which converts P-GTP into P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO) RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure.
内皮功能障碍与一氧化氮(NO)生物利用度降低以及血管和血小板中 NO 受体可溶性鸟苷酸环化酶(sGC)的激活受损有关。众所周知,红细胞(RBC)在缺氧和正常氧条件下会产生 NO;然而,RBC 中 sGC 和下游信号通路(包括磷酸二酯酶(PDE)-5 和蛋白激酶 G(PKG))的表达和/或活性的证据仍然存在争议。在本研究中,我们旨在研究 RBC 是否携带功能性 sGC 信号通路,并解决该通路在冠状动脉疾病(CAD)中是否受损的问题。我们使用两种独立的色谱程序,在此证明人类和鼠类 RBC 携带具有催化活性的 αβ-sGC(同工型 1),其将 P-GTP 转化为 P-cGMP,以及 PDE5 和 PKG。NO+BAY 41-2272 对 sGC 的特异性刺激将细胞内 cGMP 水平提高至 1000 倍,同时激活经典的 PKG/VASP 信号通路。这种对 NO 的反应在α1-sGC 敲除(KO)RBC 中减弱,但在α2-sGC KO 中完全保留。与年龄匹配的对照组相比,患有稳定 CAD 和内皮功能障碍的患者的 RBC 内皮型一氧化氮合酶(eNOS)表达减少;相比之下,NO 对 RBC sGC 表达/活性和反应性的影响完全保留,尽管两组的 sGC 氧化都增加。总的来说,我们的数据表明,完整的 sGC/PDE5/PKG 依赖性信号通路存在于 RBC 中,该通路对内皮功能障碍患者的 NO 和 sGC 刺激剂/激活剂仍具有完全反应性。靶向该通路可能有助于治疗微循环中 NO 缺乏的疾病,如镰状细胞贫血、肺动脉高压和心力衰竭。