Campbell Walter S, Karlsson Daniel, Vreeman Daniel J, Lazenby Audrey J, Talmon Geoffrey A, Campbell James R
Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
J Am Med Inform Assoc. 2018 Mar 1;25(3):259-266. doi: 10.1093/jamia/ocx097.
The College of American Pathologists (CAP) introduced the first cancer synoptic reporting protocols in 1998. However, the objective of a fully computable and machine-readable cancer synoptic report remains elusive due to insufficient definitional content in Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) and Logical Observation Identifiers Names and Codes (LOINC). To address this terminology gap, investigators at the University of Nebraska Medical Center (UNMC) are developing, authoring, and testing a SNOMED CT observable ontology to represent the data elements identified by the synoptic worksheets of CAP.
Investigators along with collaborators from the US National Library of Medicine, CAP, the International Health Terminology Standards Development Organization, and the UK Health and Social Care Information Centre analyzed and assessed required data elements for colorectal cancer and invasive breast cancer synoptic reporting. SNOMED CT concept expressions were developed at UNMC in the Nebraska Lexicon© SNOMED CT namespace. LOINC codes for each SNOMED CT expression were issued by the Regenstrief Institute. SNOMED CT concepts represented observation answer value sets.
UNMC investigators created a total of 194 SNOMED CT observable entity concept definitions to represent required data elements for CAP colorectal and breast cancer synoptic worksheets, including biomarkers. Concepts were bound to colorectal and invasive breast cancer reports in the UNMC pathology system and successfully used to populate a UNMC biobank.
The absence of a robust observables ontology represents a barrier to data capture and reuse in clinical areas founded upon observational information. Terminology developed in this project establishes the model to characterize pathology data for information exchange, public health, and research analytics.
美国病理学家学会(CAP)于1998年推出了首个癌症概要报告方案。然而,由于医学系统命名法 - 临床术语(SNOMED CT)和逻辑观察标识符名称与代码(LOINC)中定义内容不足,完全可计算且机器可读的癌症概要报告的目标仍难以实现。为了弥补这一术语差距,内布拉斯加大学医学中心(UNMC)的研究人员正在开发、编写和测试一个SNOMED CT可观察本体,以表示CAP概要工作表所确定的数据元素。
研究人员与美国国立医学图书馆、CAP、国际健康术语标准开发组织以及英国卫生和社会保健信息中心的合作者一起,分析和评估了结直肠癌和浸润性乳腺癌概要报告所需的数据元素。SNOMED CT概念表达式在UNMC的内布拉斯加词汇表©SNOMED CT命名空间中开发。每个SNOMED CT表达式的LOINC代码由Regenstrief研究所发布。SNOMED CT概念表示观察答案值集。
UNMC的研究人员共创建了194个SNOMED CT可观察实体概念定义,以表示CAP结直肠癌和乳腺癌概要工作表所需的数据元素,包括生物标志物。这些概念已绑定到UNMC病理系统中的结直肠癌和浸润性乳腺癌报告,并成功用于填充UNMC生物样本库。
缺乏强大的可观察本体是基于观察信息的临床领域数据捕获和重用的障碍。本项目中开发的术语建立了用于表征病理数据以进行信息交换、公共卫生和研究分析的模型。