Silva Marta Contreiras, Eugénio Patrícia, Faria Daniel, Pesquita Catia
LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Cancers (Basel). 2022 Apr 10;14(8):1906. doi: 10.3390/cancers14081906.
The complexity of cancer research stems from leaning on several biomedical disciplines for relevant sources of data, many of which are complex in their own right. A holistic view of cancer-which is critical for precision medicine approaches-hinges on integrating a variety of heterogeneous data sources under a cohesive knowledge model, a role which biomedical ontologies can fill. This study reviews the application of ontologies and knowledge graphs in cancer research. In total, our review encompasses 141 published works, which we categorized under 14 hierarchical categories according to their usage of ontologies and knowledge graphs. We also review the most commonly used ontologies and newly developed ones. Our review highlights the growing traction of ontologies in biomedical research in general, and cancer research in particular. Ontologies enable data accessibility, interoperability and integration, support data analysis, facilitate data interpretation and data mining, and more recently, with the emergence of the knowledge graph paradigm, support the application of Artificial Intelligence methods to unlock new knowledge from a holistic view of the available large volumes of heterogeneous data.
癌症研究的复杂性源于依赖多个生物医学学科来获取相关数据来源,其中许多学科本身就很复杂。对癌症的整体看法——这对精准医学方法至关重要——取决于在一个连贯的知识模型下整合各种异构数据源,而生物医学本体论可以发挥这一作用。本研究回顾了本体论和知识图谱在癌症研究中的应用。我们的综述总共涵盖了141篇已发表的作品,根据它们对本体论和知识图谱的使用情况,我们将其分为14个层次类别。我们还回顾了最常用的本体论和新开发的本体论。我们的综述强调了本体论在一般生物医学研究,特别是癌症研究中越来越受到关注。本体论实现了数据的可访问性、互操作性和集成性,支持数据分析,促进数据解释和数据挖掘,最近,随着知识图谱范式的出现,支持应用人工智能方法从现有的大量异构数据的整体视角中解锁新知识。