Suppr超能文献

甲羟戊酸 5-二磷酸介导 ATP 与细菌病原体的甲羟戊酸二磷酸脱羧酶结合。

Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen .

机构信息

From the Department of Biological Sciences and.

the Biophysical Analysis Laboratory, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47906.

出版信息

J Biol Chem. 2017 Dec 29;292(52):21340-21351. doi: 10.1074/jbc.M117.802223. Epub 2017 Oct 12.

Abstract

The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from (MDD). The MDD crystal structure in complex with ATP (MDD-ATP) revealed that the phosphate-binding loop (amino acids 97-105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDD to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDD performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDD-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

摘要

甲羟戊酸途径产生异戊烯二磷酸(IPP),是多异戊二烯合成的结构单元,也是人类细菌病原体生长的关键途径。该途径的最后一种酶是甲羟戊酸二磷酸脱羧酶(MDD),它作用于甲羟戊酸二磷酸(MVAPP)产生 IPP 的同时消耗 ATP。这种必需酶已被提议作为治疗耐药性细菌感染的治疗靶点。在这里,我们报告了来自 (MDD)的甲羟戊酸二磷酸脱羧酶的功能和结构研究。与 ATP 结合的 MDD 晶体结构(MDD-ATP)表明,磷酸结合环(氨基酸 97-105)不参与 ATP 结合,并且该结构中 ATP 的磷酸尾巴处于向外指向远离活性位点的位置。这表明 MDD 与 MVAPP 的结合对于将 ATP 引导至催化有利位置是必要的。酶学实验表明,MDD 以 MVAPP 为第一底物进行顺序有序的双底物反应,与等温滴定量热法(ITC)实验一致。基于 ITC 结果,我们提出这种初始先决条件的 MVAPP 结合增强了 ATP 的结合。总之,我们的发现揭示了在 MDD 催化反应过程中发生的底物诱导的底物结合事件。磷酸结合环的脱离伴随着替代的 ATP 结合构象,可能为针对这些致病肠球菌的抗菌设计提供了结构基础。

相似文献

1
Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen .
J Biol Chem. 2017 Dec 29;292(52):21340-21351. doi: 10.1074/jbc.M117.802223. Epub 2017 Oct 12.
2
Visualizing the enzyme mechanism of mevalonate diphosphate decarboxylase.
Nat Commun. 2020 Aug 7;11(1):3969. doi: 10.1038/s41467-020-17733-0.
3
Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase.
Biochemistry. 2012 Jul 17;51(28):5611-21. doi: 10.1021/bi300591x. Epub 2012 Jul 6.
5
Substrate Specificity and Engineering of Mevalonate 5-Phosphate Decarboxylase.
ACS Chem Biol. 2019 Aug 16;14(8):1767-1779. doi: 10.1021/acschembio.9b00322. Epub 2019 Jul 17.
6
Substrate binding order in mevalonate 5-diphosphate decarboxylase from chicken liver.
Biochim Biophys Acta. 1989 Jul 6;996(3):257-9. doi: 10.1016/0167-4838(89)90256-2.
8
Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.
Int J Biol Macromol. 2015 Aug;79:661-8. doi: 10.1016/j.ijbiomac.2015.05.041. Epub 2015 May 29.
10
Inhibition of bacterial mevalonate diphosphate decarboxylase by eriochrome compounds.
Arch Biochem Biophys. 2015 Jan 15;566:1-6. doi: 10.1016/j.abb.2014.12.002. Epub 2014 Dec 11.

引用本文的文献

1
Gut Microbiome in Chronic Coronary Syndrome Patients.
J Clin Med. 2021 Oct 29;10(21):5074. doi: 10.3390/jcm10215074.
2
/computational analysis of mevalonate pyrophosphate decarboxylase gene families in .
Open Life Sci. 2021 Sep 22;16(1):1022-1036. doi: 10.1515/biol-2021-0103. eCollection 2021.
3
Visualizing the enzyme mechanism of mevalonate diphosphate decarboxylase.
Nat Commun. 2020 Aug 7;11(1):3969. doi: 10.1038/s41467-020-17733-0.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Inhibition of bacterial undecaprenyl pyrophosphate synthase by small fungal molecules.
J Antibiot (Tokyo). 2016 Nov;69(11):798-805. doi: 10.1038/ja.2016.35. Epub 2016 Apr 6.
3
Lipid Flippases for Bacterial Peptidoglycan Biosynthesis.
Lipid Insights. 2016 Jan 13;8(Suppl 1):21-31. doi: 10.4137/LPI.S31783. eCollection 2015.
4
The Pfam protein families database: towards a more sustainable future.
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85. doi: 10.1093/nar/gkv1344. Epub 2015 Dec 15.
5
Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management.
Infect Drug Resist. 2015 Jul 24;8:217-30. doi: 10.2147/IDR.S54125. eCollection 2015.
6
Terpenoid biosynthesis in prokaryotes.
Adv Biochem Eng Biotechnol. 2015;148:3-18. doi: 10.1007/10_2014_285.
7
CATH: comprehensive structural and functional annotations for genome sequences.
Nucleic Acids Res. 2015 Jan;43(Database issue):D376-81. doi: 10.1093/nar/gku947. Epub 2014 Oct 27.
8
Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase.
Biochemistry. 2012 Jul 17;51(28):5611-21. doi: 10.1021/bi300591x. Epub 2012 Jul 6.
9
High-precision isothermal titration calorimetry with automated peak-shape analysis.
Anal Chem. 2012 Jun 5;84(11):5066-73. doi: 10.1021/ac3007522. Epub 2012 May 14.
10
The rise of the Enterococcus: beyond vancomycin resistance.
Nat Rev Microbiol. 2012 Mar 16;10(4):266-78. doi: 10.1038/nrmicro2761.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验