From the Department of Biological Sciences and.
the Biophysical Analysis Laboratory, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47906.
J Biol Chem. 2017 Dec 29;292(52):21340-21351. doi: 10.1074/jbc.M117.802223. Epub 2017 Oct 12.
The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from (MDD). The MDD crystal structure in complex with ATP (MDD-ATP) revealed that the phosphate-binding loop (amino acids 97-105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDD to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDD performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDD-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.
甲羟戊酸途径产生异戊烯二磷酸(IPP),是多异戊二烯合成的结构单元,也是人类细菌病原体生长的关键途径。该途径的最后一种酶是甲羟戊酸二磷酸脱羧酶(MDD),它作用于甲羟戊酸二磷酸(MVAPP)产生 IPP 的同时消耗 ATP。这种必需酶已被提议作为治疗耐药性细菌感染的治疗靶点。在这里,我们报告了来自 (MDD)的甲羟戊酸二磷酸脱羧酶的功能和结构研究。与 ATP 结合的 MDD 晶体结构(MDD-ATP)表明,磷酸结合环(氨基酸 97-105)不参与 ATP 结合,并且该结构中 ATP 的磷酸尾巴处于向外指向远离活性位点的位置。这表明 MDD 与 MVAPP 的结合对于将 ATP 引导至催化有利位置是必要的。酶学实验表明,MDD 以 MVAPP 为第一底物进行顺序有序的双底物反应,与等温滴定量热法(ITC)实验一致。基于 ITC 结果,我们提出这种初始先决条件的 MVAPP 结合增强了 ATP 的结合。总之,我们的发现揭示了在 MDD 催化反应过程中发生的底物诱导的底物结合事件。磷酸结合环的脱离伴随着替代的 ATP 结合构象,可能为针对这些致病肠球菌的抗菌设计提供了结构基础。