Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan.
Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
Sci Rep. 2017 Oct 12;7(1):13037. doi: 10.1038/s41598-017-13450-9.
Studies on the halotolerance of bacteria are attractive to the fermentation industry. However, a lack of sufficient genomic information has precluded an investigation of the halotolerance of Halomonas beimenensis. Here, we describe the molecular mechanisms of saline adaptation in H. beimenensis based on high-throughput omics and Tn5 transposon mutagenesis. The H. beimenensis genome is 4.05 Mbp and contains 3,807 genes, which were sequenced using short and long reads obtained via deep sequencing. Sixteen Tn5 mutants with a loss of halotolerance were identified. Orthologs of the mutated genes, such as nqrA, trkA, atpC, nadA, and gdhB, have significant biological functions in sodium efflux, potassium uptake, hydrogen ion transport for energy conversion, and compatible solute synthesis, which are known to control halotolerance. Other genes, such as spoT, prkA, mtnN, rsbV, lon, smpB, rfbC, rfbP, tatB, acrR1, and lacA, function in cellular signaling, quorum sensing, transcription/translation, and cell motility also shown critical functions for promoting a halotolerance. In addition, KCl application increased halotolerance and potassium-dependent cell motility in a high-salinity environment. Our results demonstrated that a combination of omics and mutagenesis could be used to facilitate the mechanistic exploitation of saline adaptation in H. beimenensis, which can be applied for biotechnological purposes.
关于细菌耐盐性的研究对发酵工业很有吸引力。然而,由于缺乏足够的基因组信息,无法研究盐单胞菌(Halomonas beimenensis)的耐盐性。在这里,我们基于高通量组学和 Tn5 转座子诱变技术,描述了 H. beimenensis 适应盐度的分子机制。H. beimenensis 基因组为 4.05 Mbp,包含 3807 个基因,这些基因通过深度测序获得的短读长和长读长进行了测序。鉴定出了 16 个耐盐性丧失的 Tn5 突变体。突变基因的同源基因,如 nqrA、trkA、atpC、nadA 和 gdhB,在钠外排、钾摄取、氢离子运输用于能量转换和相容溶质合成方面具有重要的生物学功能,这些功能被认为控制着耐盐性。其他基因,如 spoT、prkA、mtnN、rsbV、lon、smpB、rfbC、rfbP、tatB、acrR1 和 lacA,在细胞信号转导、群体感应、转录/翻译和细胞运动中发挥作用,也被证明对促进耐盐性有重要作用。此外,在高盐环境中添加 KCl 可以提高耐盐性和钾依赖性细胞运动性。我们的研究结果表明,组学和诱变技术的结合可以用于促进对 H. beimenensis 适应盐度的机制研究,这可应用于生物技术领域。