Suppr超能文献

凸同余关系

Convex congruences.

作者信息

Chajda Ivan, Länger Helmut

机构信息

Faculty of Science, Department of Algebra and Geometry, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.

Faculty of Mathematics and Geoinformation, Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

出版信息

Soft comput. 2017;21(19):5641-5645. doi: 10.1007/s00500-016-2306-8. Epub 2016 Aug 9.

Abstract

For an algebra [Formula: see text] belonging to a quasivariety [Formula: see text], the quotient [Formula: see text] need not belong to [Formula: see text] for every [Formula: see text]. The natural question arises for which [Formula: see text]. We consider algebras [Formula: see text] of type (2, 0) where a partial order relation is determined by the operations [Formula: see text] and 1. Within these, we characterize congruences on [Formula: see text] for which [Formula: see text] belongs to the same quasivariety as [Formula: see text]. In several particular cases, these congruences are determined by the property that every class is a convex subset of .

摘要

对于属于拟簇(\mathcal{Q})的代数(\mathbf{A}),对于每个(\theta\in\mathrm{Con}(\mathbf{A})),商(\mathbf{A}/\theta)不一定属于(\mathcal{Q})。于是自然会问对于哪些(\theta)会出现这种情况。我们考虑类型为((2,0))的代数(\mathbf{A}),其中偏序关系由运算(\wedge)和(1)确定。在这些代数中,我们刻画了(\mathbf{A})上的同余关系(\theta),使得(\mathbf{A}/\theta)与(\mathbf{A})属于同一个拟簇。在几个特殊情况下,这些同余关系由每个类都是(\mathbf{A})的凸子集这一性质确定。

相似文献

1
Convex congruences.凸同余关系
Soft comput. 2017;21(19):5641-5645. doi: 10.1007/s00500-016-2306-8. Epub 2016 Aug 9.
2
Ideals and primitive elements of some relatively free Lie algebras.一些相对自由李代数的理想与本原元
Springerplus. 2016 Jun 22;5(1):833. doi: 10.1186/s40064-016-2545-2. eCollection 2016.
6
Rectangular groupoids and related structures.矩形广群及相关结构。
Discrete Math. 2013 Jul 6;313(13):1409-1418. doi: 10.1016/j.disc.2013.03.012.
7
Vague congruences and quotient lattice implication algebras.模糊同余与商格蕴涵代数。
ScientificWorldJournal. 2014;2014:197403. doi: 10.1155/2014/197403. Epub 2014 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验