Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany.
ISME J. 2018 Feb;12(2):343-355. doi: 10.1038/ismej.2017.159. Epub 2017 Oct 13.
Cyanobacteria are among the most abundant photosynthetic organisms in the oceans; viruses infecting cyanobacteria (cyanophages) can alter cyanobacterial populations, and therefore affect the local food web and global biochemical cycles. These phages carry auxiliary metabolic genes (AMGs), which rewire various metabolic pathways in the infected host cell, resulting in increased phage fitness. Coping with stress resulting from photodamage appears to be a central necessity of cyanophages, yet the overall mechanism is poorly understood. Here we report a novel, widespread cyanophage AMG, encoding a fatty acid desaturase (FAD), found in two genotypes with distinct geographical distribution. FADs are capable of modulating the fluidity of the host's membrane, a fundamental stress response in living cells. We show that both viral FAD (vFAD) families are Δ9 lipid desaturases, catalyzing the desaturation at carbon 9 in C16 fatty acid chains. In addition, we present a comprehensive fatty acid profiling for marine cyanobacteria, which suggests a unique desaturation pathway of medium- to long-chain fatty acids no longer than C16, in accordance with the vFAD activity. Our findings suggest that cyanophages are capable of fiddling with the infected host's membranes, possibly leading to increased photoprotection and potentially enhancing viral-encoded photosynthetic proteins, resulting in a new viral metabolic network.
蓝藻是海洋中最丰富的光合生物之一;感染蓝藻的病毒(噬藻体)可以改变蓝藻种群,从而影响当地的食物网和全球的生物地球化学循环。这些噬菌体携带辅助代谢基因(AMGs),它们重新布线感染宿主细胞中的各种代谢途径,从而提高噬菌体的适应性。应对光损伤造成的压力似乎是噬藻体的核心需求,但总体机制还不清楚。在这里,我们报告了一种新型的、广泛存在的蓝藻噬菌体 AMG,它编码一种脂肪酸去饱和酶(FAD),在两种具有不同地理分布的基因型中都有发现。FAD 能够调节宿主膜的流动性,这是活细胞的基本应激反应。我们表明,两种病毒 FAD(vFAD)家族都是 Δ9 脂去饱和酶,催化 C16 脂肪酸链中碳 9 的去饱和。此外,我们还对海洋蓝藻进行了全面的脂肪酸分析,这表明存在一种独特的中长链脂肪酸去饱和途径,其长度不超过 C16,与 vFAD 的活性一致。我们的研究结果表明,噬藻体能够改变感染宿主的膜,可能导致增加光保护,并可能增强病毒编码的光合作用蛋白,从而形成新的病毒代谢网络。